首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fusarium head blight in small grain cereals has emerged as a major problem in the Nordic countries. However, the impact of this disease in oats has been less investigated than in other cereals. For this reason we have studied the infection process (the optimal time of infection and infection pathways) of Fusarium graminearum in oats and its subsequent effects on kernel infection, deoxynivalenol (DON) content and germination capacity. In a field experiment the oat cultivar Morton was spray-inoculated at different developmental stages, and the highest kernel infection and DON content and lowest germination percentage were observed when inoculation took place at anthesis. Field grown oats affected by a natural Fusarium head blight epidemic and spray-inoculated field and greenhouse oats were used to study the infection pathway. Results showed that the fungus entered primarily through the floret apex into the floret cavity, where it could infect via the internal surfaces of the palea, lemma and caryopsis. Both visual symptoms and fungal infections started at the apical portions of the florets and progressed to the basal portions. Hyphae of F. graminearum grew more profusely on the anthers than on other floret parts during initial stages of infection. Disease development within the oat panicle was slow and is primarily by physical contact between adjoining florets, indicating that the long pedicels give Type II resistance in oats.  相似文献   

2.
3.
Root-knot nematodes (RKNs) are one of the most important biotic factors limiting crop productivity in many crop plants. The major RKN control strategies include development of resistant cultivars, application of nematicides and crop rotation, but each has its own limitations. In recent years, RNA interference (RNAi) has become a powerful approach for developing nematode resistance. The two housekeeping genes, splicing factor and integrase, of Meloidogyne incognita were targeted for engineering nematode resistance using a host-delivered RNAi (HD-RNAi) approach. Splicing factor and integrase genes are essential for nematode development as they are involved in RNA metabolism. Stable homozygous transgenic Arabidopsis lines expressing dsRNA for both genes were generated. In RNAi lines of splicing factor gene, the number of galls, females and egg masses was reduced by 71.4, 74.5 and 86.6%, respectively, as compared with the empty vector controls. Similarly, in RNAi lines of the integrase gene, the number of galls, females and egg masses was reduced up to 59.5, 66.8 and 63.4%, respectively, compared with the empty vector controls. Expression analysis revealed a reduction in mRNA abundance of both targeted genes in female nematodes feeding on transgenic plants expressing dsRNA constructs. The silencing of housekeeping genes in the nematodes through HD-RNAi significantly reduced root-knot nematode infectivity and suggests that they will be useful in developing RKN resistance in crop plants.  相似文献   

4.
Rice blast is the most serious disease threat to rice production worldwide. It is difficult to control due to the complex diversity and wide geographic distribution of the causal pathogen Magnaporthe oryzae. In Australia, rice blast occurs in northern Australia but remains exotic to the main south-eastern rice growing area; however, there is the potential for rice blast to threaten this area; in addition, rice production is currently expanding from south-eastern Australia into northern Australia, which makes rice blast a major concern and challenge to rice industry in Australia. Prior to this study, there was lack of information on the race status of M. oryzae present in Australia and on how to manage the disease through host resistance. The races of rice blast isolates collected in northern Australia was characterised based on the disease reactions of eight standard rice differentials used in an international race differential system. The following studies revealed genes conferring resistance to these races through investigating the responses of 25 monogenic rice lines with targeted resistance gene against different races. The rice blast isolates were characterised into five races: IA-1, IA-3, IA-63, IB-3 and IB-59. Genes Pi40, Piz-t, Pi9, Pi5(t) and Pi12(t) exhibited resistance to all the isolates belonging to five races. In addition, two genes showed complete resistance to multiple races, viz. Pi9 that showed complete resistance to races IA-1, IA-3, IA-63 and IB-3 and Pita2 that had complete resistance to races IA-3, IB-3 and IB-59. This study provides information about the races of M. oryzae in Australia. Genes identified conferring resistance to multiple races will not only streamline the identification via molecular markers of imported rice varieties with resistance to rice blast in Australia, but will also allow the Australian rice breeding program to develop new varieties with broad-spectrum resistance to rice blast and pyramid multi-gene resistance into Australian rice varieties.  相似文献   

5.
Pikm-specific rice blast resistance is conferred by a combination of two genes that have a nucleotide-binding site and a leucine-rich repeat (LRR), Pikm1-TS and Pikm2-TS. To study the evolution of these genes, we investigated the allele diversity of their LRR regions in 16 elite rice cultivars and 35 landraces. Both phylogenetic trees were characterized by a deep bifurcation that separated two major clades of alleles. A high level of polymorphism was detected exclusively between these clades and not within each clade. This two-clade structure commonly observed for the two genes suggests that these genes have evolved together through bidirectional differentiation.  相似文献   

6.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

7.
A metabolomics based approach has been used to study the infection of the Hwacheong rice cultivar (Oryza sativa L. cv. Hwacheong) with compatible (KJ201) and incompatible (KJ401) strains of the rice blast fungal pathogen Magnaporthe grisea. The metabolic response of the rice plants to each strain was assessed 0, 6, 12, 24, 36, and 48 h post inoculation. Nuclear Magnetic Resonance (NMR) spectroscopy and Gas and Liquid Chromatography Tandem Mass spectrometry (GC/LC-MS/MS) were used to study both aqueous and organic phase metabolites, collectively resulting in the identification of 93 compounds. Clear metabolic profiles were observed at each time point but there were no significant differences in the metabolic response elicited by each pathogen strain until 24 h post inoculation. The largest change was found to be in alanine, which was ~30% (±9%) higher in the leaves from the compatible, compared to the resistant, plants. Together with several other metabolites (malate, glutamine, proline, cinnamate and an unknown sugar) alanine exhibited a good correlation between time of fungal penetration into the leaf and the divergence of metabolite profiles in each interaction. The results indicate both that a wide range of metabolites can be identified in rice leaves and that metabolomics has potential for the study of biochemical changes in plant-pathogen interactions.  相似文献   

8.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

9.
The tomato pathotype of Alternaria alternata (A. arborescens) produces the dark brown to black pigment melanin, which accumulates in the cell walls of hyphae and conidia. Melanin has been implicated as a pathogenicity factor in some phytopathogenic fungi. Here, two genes of the tomato pathotype for melanin biosynthesis, ALM1 and BRM2-1, which encode a polyketide synthetase and a 1,3,8-trihydroxynaphthalene (THN) reductase, respectively, have been cloned and disrupted in the pathogen. The gene-disrupted mutants, alm1 and brm2-1, had albino and brown phenotypes, respectively. The wild-type and the mutants caused the same necrotic lesions on the leaves after inoculation with spores. These results suggest that melanin is unlikely to play a direct role in pathogenicity in the tomato pathotype A. alternata. Scanning electron microscopy revealed that the conidia of both mutants have much smoother surfaces in comparison to the wild-type. The conidia of those mutants were more sensitive to UV light than those of the wild-type, demonstrating that melanin confers UV tolerance.  相似文献   

10.
In leaves pretreated with an indole derivative [indole-3-acetic acid (IAA) tryptamine, or tryptophan], blast lesion formation was suppressed compared to those treated with distilled water (DW) as a control. Phenylalanine ammonia-lyase (PAL) activity and PAL expression were significantly enhanced in the IAA- or tryptophan-pretreated leaves, but not in tryptamine-pretreated leaves. This induction of resistance was inhibited by pretreatment with a PAL inhibitor, α-aminooxyacetic acid, in IAA- and in tryptophan-treated leaves, but not in tryptamine-treated leaves. This study strongly shows that the indole derivatives IAA tryptamine and tryptophan can enhance a disease resistance mechanism that is supported by different metabolic pathways.  相似文献   

11.
Virus-like symptoms—red ringspots on stems and leaves, circular blotches or pale spots on fruit—were found on commercial highbush blueberry (Vaccinium corymbosum) cultivars Blueray, Weymouth, Duke and Sierra in Japan. In PCR testing, single DNA fragments were amplified from total nucleic acid samples of the diseased blueberry bushes using primers specific to Blueberry red ringspot virus (BRRV). Sequencing analysis of the amplified products revealed 95.7–97.7% nucleotide sequence identity with the BRRV genome. This paper is the first report of blueberry red ringspot disease caused by BRRV in Japan. The nucleotide sequence data reported in this paper are available in the GenBank/EMBL/DDBJ database as accessions AB469884 to AB469893 for BRRV isolates from Japan.  相似文献   

12.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

13.
Solanum nigrum, black nightshade, is a wild non-tuber bearing hexaploid species with a high level of resistance to Phytophthora infestans (Colon et al. 1993), the causal agent of potato late blight, the most devastating disease in potato production. However, the genetic mode of resistance in S. nigrum is still poorly understood. In the present study, two S. nigrum accessions, 984750019 (N19) and #13, resistant (R) and susceptible (S), respectively, to three different isolates of P. infestans, were sexually crossed. The various kinds of progeny including F1, F2, F3, and backcross populations (BC1; F1 × S), as well as two populations produced by self-pollinating the R parent and S parent, were each screened for susceptibility to P. infestans isolate MP 324 using detached leaf assays. Fifty seedling plant individuals of the F1 progeny were each resistant to this specific isolate, similarly to the seedling plants resulting from self-pollination of the resistant R parent. Thirty seedling plants obtained from self-pollination of the S parent were susceptible. Among a total of 180 F2 plants, the segregation ratio between resistant and susceptible plants was approximately 3: 1. Among the 66 seedling plants of the BC1 progeny originating from crossing an F1 plant with the susceptible S parent, there were 26 susceptible and 40 resistant plants to P. infestans. The segregation patterns obtained indicated monogenic dominant inheritance of resistance to P. infestans isolate MP 324 in S. nigrum acc. 984750019. This gene, conferring resistance to P. infestans, may be useful for the transformation of potato cultivars susceptible to late blight.  相似文献   

14.
Gilbertella persicaria is a pathogenic fungus recently reported as a causative agent of soft rot in papaya fruits. Here the interactions between G. persicaria and papaya fruits was analyzed under laboratory conditions using histological techniques and optical microscopy to elucidate the process of pathogenesis. Healthy and disinfested fruits of papaya cv. Maradol were also inoculated with a suspension of sporangiospores of G. persicaria. Tissue sections were cut, which were subjected to differential staining with safranin-fast green for different times. Sporangiospores presumably adhered to the cuticle of the fruit by 3 h post inoculation (hpi) and germinated by 6 hpi; invasive intracellular hyphae were growing in host cells by 9 hpi. By 15 hpi, fruit epidermis was macerated, presumably by enzymatic activity reported for mucoral fungal species and appeared as a wet-looking lesion on the cuticle. Fruit mesocarp was colonized by 30 hpi, and asexual reproduction structures had formed by 48 hpi. This process of infection and disease development of G. persicaria in papaya fruits corresponds to that used by pathogens with a necrotrophic lifestyle.  相似文献   

15.
Puccinia horiana is the causal agent of chrysanthemum white rust or Japanese rust. This microcyclic autoecious rust has a quarantine status and can cause major damage in the commercial production of Chrysanthemum x morifolium. Given the international and often trans-continental production of planting material and cut flowers of chrysanthemum and the decreasing availability of registered fungicides in specific regions, breeding for resistance against P. horiana will gain importance and will need to involve the appropriate resistance genes for the pathotypes that may be present. As pathotypes have not been well characterized in this system, the main objective was to build an international collection of isolates and screen these on a large collection of cultivars to identify different pathotypes. Using a robust and high throughput bioassay, we tested 36 selected cultivars with 22 individual single-pustule isolates of P. horiana. The isolates originated from three different continents over 4 different collection years and included some isolates from cultivars previously reported as resistant. In most cases the bioassays resulted in a clear scoring of interaction phenotypes as susceptible or resistant, while in several cases consistent intermediate phenotypes were found, often on specific cultivars. Twenty-four of the cultivars gave a differential interaction phenotype profile. All isolates produced a unique profile, infecting a minimum of 4 and a maximum of 19 differential cultivars. Based on the Person analysis of these profiles, this pathosystem contains at least seven resistance genes (and seven avirulence genes), demonstrating the highly complex race structure in this pathosystem.  相似文献   

16.
The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) is occasionally found in beehives and is a major pest of stored wax. Entomopathogenic fungi have recently received attention as possible biocontrol elements for certain insect pests. In this study, 90 isolates of Beauveria bassiana and 15 isolates of Metarhizium anisopliae were screened for proteases and lipases production. The results showed significant variations in the enzymatic action between the isolates. In the bioassay, the selected isolates evinced high virulence against the 4th instar of the G. mellonella larvae. The isolates BbaAUMC3076, BbaAUMC3263 and ManAUMC3085 realized 100% mortality at concentrations of 5.5 × 106 conidia ml−1, 5.86 × 105 conidia ml−1, and 4.8 × 106 conidia ml−1, respectively. Strong enzymatic activities in vitro did not necessarily indicate high virulence against the tested insect pest. The cuticle of the infected larvae became dark and black-spotted, indicating direct attack of fungus on the defense system of the insects. The LC50 values were 1.43 × 103, 1.04 × 105 and 5.06 × 104 for Bba3263AUMC, Bba3076AUMC and Man3085AUMC, respectively, and their slopes were determined by computerized probit analysis program as 0.738 ± 0.008, 0.635 ± 0.007 and 1.120 ± 0.024, respectively.  相似文献   

17.
From the genome of a Japanese field isolate of the rice blast fungus, Magnaporthe oryzae, we newly identified Inago1 and Inago2 LTR retrotransposons. Both elements were found to be Ty3/gypsy-like elements whose copies were dispersed within the genome of Magnaporthe spp. isolates infecting rice and other monocot plants. Southern hybridization patterns of nine re-isolates derived from conidia of the strain Ina168 produced after a methyl viologen treatment were not changed, indicating that the insertion pattern of Inago elements is relatively stable.  相似文献   

18.
Xanthomonas oryzae pv. oryzicola, the causal agent of rice leaf streak disease, was found to be sensitive to streptomycin (an aminocyclitol glycoside antibiotic), by inhibition of protein synthesis resulting from interference with translational proofreading. This study aimed to determine the molecular resistance mechanism of X. oryzae pv. oryzicola to streptomycin. Seven streptomycin-resistant mutants were obtained by UV induction or streptomycin selection. These mutants can grow at 100 μg ml−1 of streptomycin while the wild-type strain (RS105) cannot grow at 5 μg ml−1. Sequencing indicated that the rpsL gene encoding ribosomal protein S12 has 375 bp encoding 125 amino acid residues. In all resistant strains, a mutation in which AAG was substituted for AGG (Lys→Arg) occurred either at codon 43 or 88. Two plasmids, pUFRRS and pUFRRX, were constructed by ligating the rpsL gene into the cosmid pUFR034. The plasmids pUFRRS and pUFRRX containing the Lys→Arg mutation of the rpsL gene conferred streptomycin resistance to the sensitive wild-type strain by electroporation. Both transformants, RS1 and RS2, could grow in the medium containing 50 μg ml−1 of streptomycin. A mutation at codon 43 or 88 in rpsL can result in resistance of Xanthomonas oryzae pv. oryzicola to streptomycin.  相似文献   

19.
A survey was conducted in 16 fields cultivated with broad bean (Vicia faba L.) and garden pea (Pisum sativum L.) in nine localities of Apulia, southern Italy, to determine whether annual weeds were susceptible to the pea cyst nematode (PEACN), Heterodera goettingiana, and could therefore serve as alternate host for the nematode. The results of this study showed that black medick (Medicago lupulina L.) is a good host for the nematode increasing its population levels in the soil in the absence of the primary hosts. The identity of the PEACN was confirmed by integrative taxonomic approaches (classical, and molecular), resulting identical in all cases (broad bean and garden pea, as well as the spontaneous black medick infections). The phylogenetic analyses using ITS and coxI gene regions strongly support the identification of the populations of H. goettingiana from Italy. Also, ITS and coxI gene sequences were obtained from the same cyst, confirming the species identity in comparison to other nematodes and populations in the Goettingiana group, demonstrating that ITS and coxI gene regions of the PEACN are suitable molecular markers for accurate and unequivocal identification of the PEACN. Reproduction and histopathological analyses demonstrated a good host-suitability of black medick to the PEACN. This record enlarges the relatively narrow host-range of the pea cyst nematode and indicates the need to control M. lupulina to avoid the increase of the nematode population in the absence of the main host crop.  相似文献   

20.
Pyricularia oryzae (rice blast) conidial development at pre-penetration stage determines success or otherwise of infection inside the rice host plants. Studies on conidial germination and growth on the leaf surface in commercial rice (Oryza sativa) report differently, dependent upon host type and level of blast resistance. Although wild rice (O. australiensis) is known to be an alternative host of blast, the interaction between P. oryzae conidia and wild O. australiensis on its leaf surface has not been previously studied. We found significant (P?<?0.001) differences in conidial development between two blast isolates with different virulence in terms of conidial germination, germ tube growth and appressoria formation on both wild and cultivated rice. Conidial germination at 6 h post-inoculation (hpi) for the virulent isolate was significantly (P?<?0.001) delayed. Germ tubes of the avirulent isolate conidia grew significantly (P?<?0.001) faster and with significantly (P?<?0.001) longer germ tubes than from virulent conidia. Appressoria development for the virulent isolate was significantly (P?<?0.001) faster at its later growth stages of 12 and 18 hpi when approximately 100% of germ tubes formed appressoria. In contrast, formation rate of appressoria for the avirulent isolate was significantly (P?<?0.001) slower and only reached 76% of germ tubes forming appressoria. Appressoria formation on O. australiensis was significantly (P?<?0.001) greater than the formation on O. sativa for both virulent and avirulent P. oryzae at 12 hpi, a clear indication that host type influences the extent of appressoria formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号