首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific primers targeting Penicillium digitatum were developed based on fungal genes RPB1 and cmd, which are conserved among the genomes of Penicillium spp. The specific primers were designed based on the mutational sites in the homologous regions of the conserved genes. The results indicated that primer pairs RPB1–1 and cmd-3 were specific enough to distinguish Penicillium digitatum (N1) from Penicillium chrysogenum (Q), Penicillium italicum (A10) and Penicillium expansum (L) when the DNA samples were diluted 100-fold. To further verify the effectiveness and specificity of the two primer pairs RPB1–1 and cmd-3, 38 strains of fungal isolates from sources related to citrus were detected using both primer pairs, and 14 candidate P. digitatum strains were identified. Then, the fourteen candidate P. digitatum strains were further identified as P. digitatum by morphological and molecular methods, which confirmed the detection accuracy and reliability of the specific primer pairs RPB1–1 and cmd-3 as molecular markers of P. digitatum. This work may significantly facilitate the rapid identification of P. digitatum in the citrus industry.  相似文献   

2.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

3.
Ethylene has been shown to promote spore germination and hyphal growth in the phytopathogenic fungus Alternaria alternata. However, little is known about the ethylene biosynthetic pathway in this fungus. In the present study, the ethylene biosynthetic pathway in A. alternata was investigated to explore ethylene-associated virulence of this fungus. The strain A0 of A. alternata did not produce ethylene on basal medium with different possible precursors or intermediates for ethylene biosynthesis (glutamate, aspartate, 2-oxoglutarate and 1-aminocyclopropano ?1-carboxylic acid). However, ethylene production was observed when methionine was added as a precursor to the medium and was further promoted by continuous light illumination. Furthermore, addition of 2-keto-4-methylthiobutyric acid (KMBA) promoted ethylene production in the absence of methionine, indicating that the KMBA pathway was mainly responsible for ethylene biosynthesis in this fungus. The strain A0 was inoculated into grape berries to examine the effect of ethylene production on its virulence (as assessed by lesion formation at the inoculation site). The results indicated that higher ethylene production caused larger lesion formation. Similar results were also obtained when isolates of A. alternata, obtained from infected grapes, were inoculated. Thus, the present study thus demonstrated that A. alternata produces ethylene via the KMBA pathway and utilizes it for enhanced virulence expression during infection.  相似文献   

4.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

5.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

6.
This study evaluated the efficacy of the extracts of Ophiocordyceps sobolifera isolate Cod-NB1302 for the biological control of chili anthracnose disease caused by Colletotrichum capsici and C. gloeosporioides under pot conditions. Among the extracts, mycelial extract treatments provide the best reduction in disease severity. Interestingly, two bioactive constituents, adenosine and cordytropolone, from the mycelial extract, inhibited growth of the fungal pathogens. Moreover, these bioactive compounds had a synergistic effect against the fungal pathogens in a pot experiment. These results confirmed the disease suppressive activity of the mycelial extract.  相似文献   

7.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

8.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

9.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

10.
The receptor-like cytoplasmic kinases (RLCK family VII) are required for plant defense against various pathogens. Previously, OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) was isolated from rice as a potential RSV (rice stripe virus) resistant factor, but its physiological roles in plant defense are yet to be investigated. In this study, we demonstrated that OsPBL1increased defense against P. syringae in transgenic Arabidopsis. To ascertain the role of OsPBL1 gene in plant defense, OsPBL1 tagged with HA (i.e. Hemagglutinin) was overexpressed in Arabidopsis and examined for the resistance against Pseudomonas syringae pv. tomato DC3000 (i.e. Pst DC3000). At 3 dpi of Pst DC3000, transgenic Arabidopsis lines exhibited the reduced chlorotic lesion and propagation of P. syringae, compared to wild type. Elevated pathogen resistance of transgenic lines was correlated with increased H2O2 accumulation and callose deposition on the infected leaves. It was also revealed that expression levels of salicylic acid dependent genes such as PR1, PR2, and PR5, were induced higher in transgenic lines than wild type. Taken together, our data suggested that OsPBL1 exerted the role in defense against pathogen attacks in plant via mainly facilitating salicylic acid dependent pathway.  相似文献   

11.
Gilbertella persicaria is a pathogenic fungus recently reported as a causative agent of soft rot in papaya fruits. Here the interactions between G. persicaria and papaya fruits was analyzed under laboratory conditions using histological techniques and optical microscopy to elucidate the process of pathogenesis. Healthy and disinfested fruits of papaya cv. Maradol were also inoculated with a suspension of sporangiospores of G. persicaria. Tissue sections were cut, which were subjected to differential staining with safranin-fast green for different times. Sporangiospores presumably adhered to the cuticle of the fruit by 3 h post inoculation (hpi) and germinated by 6 hpi; invasive intracellular hyphae were growing in host cells by 9 hpi. By 15 hpi, fruit epidermis was macerated, presumably by enzymatic activity reported for mucoral fungal species and appeared as a wet-looking lesion on the cuticle. Fruit mesocarp was colonized by 30 hpi, and asexual reproduction structures had formed by 48 hpi. This process of infection and disease development of G. persicaria in papaya fruits corresponds to that used by pathogens with a necrotrophic lifestyle.  相似文献   

12.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

13.
14.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

15.
A severe outbreak of southern blight disease of China aster was observed during the post rainy season (September–November 2015) in the Mysore and Mandya Districts of Karnataka, Southern India. The disease incidence ranged between 12 and 47%. The typical disease symptoms include water-soaked lesions on leaves, stems and on the lower stem surfaces followed by quick wilting of the whole plant with abundant production of sclerotia near the stem-soil interface. The associated fungal pathogen was isolated on potato dextrose agar (PDA) medium, on which numerous reddish-brown sclerotia were seen. A total of 26 fungal isolates were isolated and studied for the mycelial compatibility. Isolate SrCCM 1 was used for pathogenicity analysis. The results of the study showed that, there was no variation among the isolates tested. Molecular identification of the pathogen by ITS-rDNA sequences of S. rolfsii showed 100% similarity with reference sequences. Based on the cultural, morphological and molecular characteristics, the fungal pathogen was identified as Sclerotium rolfsii Sacc. (Sexual morph: Athelia rolfsii (Curzi) C.C. Tu & Kimbr). Pathogenicity tests were performed on healthy leaves, roots and stems. Typical disease symptoms on leaves, stems and roots were evident after 5, 8 and 10 days of post-inoculation. Sclerotium rolfsii is known to cause diseases in economically important crop plants. However, no reports are available on the occurrence of S. rolfsii on China aster in India.  相似文献   

16.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

17.
A qPCR approach was developed to specifically monitor in soils Fusarium graminearum, the main agent responsible for Fusarium Head Blight, and the biocontrol agent Gliocladium catenulatum J1446 (Prestop®). For both fungi, the amplification efficacy of standard curves obtained by mixing pure fungal DNA and soil background DNA was high (qPCR efficacy>96% with R2?>?0.97) with a linear range from 10?3 ng to 10 ng/μL. Our qPCR method allowed quantifying down to 1 μg of F. graminearum and G. catenulatum J1446 mycelium per g of soil. The strong correlation observed between fungal biomass and quantified DNA (R2?=?0.9927 and 0.9356 for F. graminearum and G. catenulatum J1446, respectively) supported the use of the primers to monitor both fungi in soils. Under our experimental conditions, the ability of Prestop® to reduce F. graminearum growth was significantly higher in autoclaved soil compared to living soils, suggesting that there is an antagonistic effect of the soil microbial communities. In contrast, G. catenulatum J1446 growth was mostly not affected by the presence of F. graminearum and was able to persist in both autoclaved and living soils after 15 days of incubation. These results indicate that our qPCR approach may be used to assess the success of soil colonization by a biocontrol agent and its control efficacy by monitoring the dynamics of the BCA and the targeted pathogen in soil.  相似文献   

18.
Effects simultaneous and sequential inoculations of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans were studied on the growth, chlorophyll and carotenoid contents of eggplants grown in 25% fly ash and 25% sand mix soil. Plants grown in 25% fly ash mix soil had lesser plant growth than grown in 25% sand ash mix soil. Inoculation of M. incognita / R. solanacearum or P. vexans caused reduction in plant growth, chlorophyll and carotenoid contents in both types of soils but these pathogens in combination caused a greater reduction in than individual inoculation. Inoculation of M. incognita 20 days prior to R. solanacearum caused a greater reduction in plant growth than inoculation of M. incognita prior to P. vexans. Inoculation of P. vexans prior to R. solanacearum caused a lesser reduction in plant growth, chlorophyll and carotenoid contents than inoculation of P. vexans prior to M. incognita. Inoculation of R. solanacearum 20 days prior to M. incognita caused a greater reduction in plant growth, chlorophyll and carotenoid contents than inoculation of R. solanacearum prior to P. vexans. Galling and multiplication of M. incognita was higher in plants grown in 25% sand amended soil than with 25% fly ash soil. R. solanacearum and P. vexans had adverse effects on galling and nematode multiplication. Wilt and blight indices caused by R. solanacearum and P. vexans were 3 respectively. Wilt and blight indices were 4 when two pathogens were inoculated together.  相似文献   

19.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

20.
Colletotrichum gloeosporioides is the causal agent of Camellia oleifera anthracnose, mainly infecting fruits and leaves. The fungus secretes degrading enzymes to destroy the cuticle of aerial plant parts and help infect the host successfully. To validate whether a cutinase gene (CglCUT1) was required for cutinase activity and pathogenicity of C. gloeosporioides, the CglCUT1 gene was cloned and analyzed. The characterization of CglCUT1 predicted protein suggests that the cloned DNA encoded a cutinase in C. gloeosporioides affecting C. oleifera. The CglCUT1 showed a high homology to those from C. gloeosporioides causing papaya anthracnose and C. capsici causing pepper anthracnose, as well as those of other ascomycetes. The whole CglCUT1 gene was knocked-out and the knockout mutant (?CglCUT39) was subsequently complemented using Agrobacterium tumefaciens mediated transformation. The knockout transformants exhibited significant decreases in cutinase activity and virulence compared with the wild-type strain. The complemented transformants of the disrupted transformant ?CglCUT39 showed a significant increase in cutinase activity and virulence compared with the disrupted transformant ?CglCUT39. This study suggests that the CglCUT1 gene has a positive effect on fungal virulence of the hemibiotrophic C. gloeosporioides on C. oleifera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号