首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectinolytic bacteria from the genus Dickeya (former Erwinia chrysanthemi), belonging to Dickeya dianthicola and Dickeya solani species, are causative agents of blackleg and soft rot diseases in Europe. Recently, D. solani have been isolated most frequently from potato plants with the symptoms of blackleg and soft rot. D. solani strains were shown to cause more severe disease symptoms on potato plants than D. dianthicola especially at the higher temperature. They are also able to develop blackleg disease from lower inoculum levels. In the presented study we not only compared phenotypic features of fifteen D. solani strains isolated in countries having different climatic conditions, Poland, Finland and Israel, but also we examined three D. dianthicola strains. The comparison was performed to determine the influence of the strain origin and the temperature of incubation on the ability of the strains to macerate potato tissue and on their major virulence factors such as: pectinolytic, cellulolytic and proteolytic activities, siderophore production and motility. Polish D. solani strains showed higher activities of cell wall degrading enzymes than the Finnish and Israeli strains at all the tested temperatures: 18, 27, 37 °C. This observation is correlated with the higher ability of Polish D. solani strains to cause soft rot. In addition, D. solani strains exhibited higher activity of the above mentioned enzymes and caused more severe potato tuber maceration in laboratory tests than the tested D. dianthicola strains. The collected results indicate that although D. solani strains from different climatic conditions have identical Pulse Field Gel Electrophoresis (PFGE) profiles in addition to the same fingerprint profiles obtained by the repetitive sequence-based polymerase chain reaction (REP, ERIC and BOX repetitive sequences), they differ in the examined phenotypic features, especially in the activities of pectinolytic, cellulolytic and proteolytic enzymes and their capacity to macerate potato tuber tissue.  相似文献   

2.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

3.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

4.
Soft rot and blackleg of potato caused by pectinolytic bacteria lead to severe economic losses in potato production worldwide. To investigate the species composition of bacteria causing soft rot and black leg of potato in Norway and Poland, bacteria were isolated from potato tubers and stems. Forty-one Norwegian strains and 42 Polish strains that formed cavities on pectate medium were selected for potato tuber maceration assays and sequencing of three housekeeping genes (dnaX, icdA and mdh) for species identification and phylogenetic analysis. The distribution of the species causing soft rot and blackleg in Norway and Poland differed: we have demonstrated that mainly P. atrosepticum and P. c. subsp. carotovorum are the causal agents of soft rot and blackleg of potatoes in Norway, while P. wasabiae was identified as one of the most important soft rot pathogens in Poland. In contrast to the other European countries, D. solani seem not to be a major pathogen of potato in Norway and Poland. The Norwegian and Polish P. c. subsp. carotovorum and P. wasabiae strains did not cluster with type strains of the respective species in the phylogenetic analysis, which underlines the taxonomic complexity of the genus Pectobacterium. No correlation between the country of origin and clustering of the strains was observed. All strains tested in this study were able to macerate potato tissue. The ability to macerate potato tissue was significantly greater for the P. c. subsp. carotovorum and Dickeya spp., compared to P. atrosepticum and P. wasabiae.  相似文献   

5.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

6.
Aureobasidium isolated from Vitis vinifera (cv Chardonnay) grapevine tissues were characterised using morphological and molecular techniques. Species level identification of 29 isolates was accomplished by partial amplification and sequencing of the ITS region (ITS1–5.8S–ITS2) using universal primers ITS1 and ITS4. A comparison of nucleotide sequences using BLAST followed by phylogenetic analysis revealed that all isolates examined were Aureobasidium pullulans. Strain level discrimination of a total of 100 epiphytic Aureobasidium isolates including three reference strains was successfully carried out using two inter simple sequence repeat (ISSR) primers, (AAC)5 and (GTG)5 and the Intron Splice Junction R1 (ISJ-R1) primer in which 24, 24 and 15 scorable bands were produced for each primer, respectively. The high level of genetic variation recorded among the isolates further highlighted the high levels of strain diversity among A. pullulans residing on grapevines. Thirty-two epiphytic Aureobasidium isolates were examined for their ability to inhibit the growth of Greeneria uvicola, responsible for bitter rot of grapes. Using an in-vitro dual-culture antagonism assay, all isolates inhibited the growth of G. uvicola (Isolates DAR 77272 and DAR 77273) with inhibition ranging from 15 to 85%. Three Aureobasidium isolates were then examined for their ability to inhibit G. uvicola when co-inoculated onto detached berries, leaves and grape bunches growing on potted vines in a glass house. All isolates reduced the severity of bitter rot infection. The results indicate that A. pullulans has the potential to suppress bitter rot of grapes.  相似文献   

7.
Four Neofabraea species are responsible for bull’s eye rot, which is an important postharvest disease of apples and pears. The species diversity of its causal agents in Europe has not been thoroughly explored using molecular genetic methods. Eighty-one Neofabraea isolates were obtained mostly from apples with bull’s eye rot symptoms in the Czech Republic over a two year period. The isolates were identified using PCR fingerprinting and DNA sequencing of the ITS rDNA region, the mitochondrial SSU rDNA and the β-tubulin and EF1α genes. The most common species was N. alba (89 %), followed by N. perennans (5 %) and N. kienholzii (5 %). This is the third published record of N. kienholzii in Europe. The species identity of the isolate CPPF507, which was placed close to N. kienholzii, remains unclear. EF1α was shown to be a suitable marker for the identification of species of the genus Neofabraea and was comparable to the previously used β-tubulin gene. Furthermore, the aggressiveness of individual species was compared and species distribution across Europe was summarized. N. perennans and isolate CPPF507 proved to be the most aggressive, whereas the least aggressive was N. kienholzii. Two N. alba isolates isolated from symptomless apple fruits and leaves were pathogenic to apples in the infection tests.  相似文献   

8.
The taxonomic assignment of Japanese potato blackleg isolates of Dickeya spp. has not been confirmed after the changes in their former name, Erwinia chrysanthemi. Therefore, we investigated and identified 23 representative isolates of Dickeya spp. from symptomatic stems of potatoes in Japan, with biochemical tests and phylogenetic sequence analysis using recA, dnaX, rpoD, gyrB, and 16S rDNA sequences. Results of our biochemical tests showed that all isolates can be assigned to phenon 5 and biovar 1, which are associated with D. dianthicola. Based on the recA, dnaX, rpoD, gyrB, and 16S rDNA sequences, all isolates are in the same clade with D. dianthicola and were clearly distinguished from D. chrysanthemi, D. dadantii, D. dadantii subsp. dieffenbachiae, D. solani, D. zeae, and D. paradisiaca. Therefore, we conclude that Dickeya spp. isolated from potatoes with blackleg symptoms in Japan are D. dianthicola.  相似文献   

9.
Calonectria ilicicola Boedijin & Reitsma (anamorph: Cylindrocladium parasiticum Crous, Wingfield & Alfennas) is an important pathogen worldwide, which causes Cylindrocladium black rot (CBR) in peanut (Arachis hypogaea L.) and red crown rot (RCR) in soybean [Glycine max (L.) Merr.]. We isolated the CBR and RCR pathogens from heavily diseased peanut and soybean fields in southern China and assessed their pathogenicity. Two inoculation methods were applied separately to evaluate the pathogenicity of different C. ilicicola strains on peanut cultivar Yueyou 13. Our results indicate that the Chinese C. ilicicola strains exhibited a range of virulence on peanut, with strains of soybean origin exhibiting a weak virulence relative to strains isolated from peanut. Multilocus sequence type analysis indicates that the C. ilicicola strains partitioned into two distinct clades, which were heavily structured based on geographical origin. Phylogenetic results demonstrated that the origins of C. ilicicola in southern China were multiple. This study also revealed that the backgrounds of CBR pathogens may be different from those of RCR pathogens.  相似文献   

10.
Wood-staining fungi, moulds and decay fungi colonize freshly cut wood. Of these, only ophiostomatoid fungi are considered major agents of sapstain on logs and freshly sawn lumber because they can cause permanent staining and discoloration. Sapstain in pine pallets significantly reduces their market value and use in the food industry. The aim of this study was to identify the sapstaining fungi that colonize Scots pine wood used in pallet production. In addition, we evaluated the growth and stain intensity of six isolates of ophiostomatoid fungi on freshly cut Scots pine billets. Fungi were isolated from samples of Scots pine and identified based on morphology and DNA sequence comparisons for three gene regions (ITS, β-tubulin, TEF-1α). A total of 1259 isolates representing 31 fungal species were obtained from the pine samples in Poland during July and September. The isolates represented different ecological and taxonomical groups and belonged to the categories of staining fungi, decay fungi and surface moulds. The most frequently isolated fungi were ophiostomatoid fungi (14 species including an unknown Leptographium sp. and Ophiostoma sp.) and moulds (mainly Trichoderma and Mucor spp.). Of the ophiostomatoid species, Ophiostoma floccosum, O. piceae, O. piliferum and Endoconidiophora pinicola were the predominant species. The results of pine billet inoculation showed that among the six fungal species tested, E. pinicola exhibited the fastest growth in all three directions on the billets. Ophiostoma minus and O. piliferum displayed moderate growth rates in pine billets, while O. floccosum, O. piceae, and Leptographium lundbergii grew very slowly, especially in the tangential and radial directions. The information provided in this paper will help develop more effective control strategies for sapstain prevention in Scots pine.  相似文献   

11.
Root rots are limiting factor for pea production worldwide. This disease is caused by a pathogen complex and the role of single pathogens is unclear. This study aimed at identifying pathogens involved in a root rot of organically grown field pea in Germany, and establishing their importance in the disease complex. The potential of yard waste compost to suppress the diseased was also studied. Average disease severity index was similar in 2010 and 2011 (DI of 4.56 to 4.59, respectively) but it increased in 2012 to DI 5.8. Peyronellaea pinodella was most frequently isolated pathogen, with isolation frequency from 86%, 73% and 86% in 2010, 2011 and 2012, respectively. In addition, Didymella pinodes, Fusarium solani f. sp. pisi, F. oxysporum f. sp. pisi and F. avenaceum were the main fungi recovered from pea roots. In pathogenicity test all of the tested pathogens caused weak symptoms on the pigmented winter variety EFB33 and moderate to severe symptoms on the white flowering summer variety Santana. F. avenaceum was the most aggressive pathogen on Santana with DI of 7.4 followed by P. pinodella with DI of 5.7. The high aggressiveness combined with the wide host range highlights the possibility of F. avenaceum emerging as potential risk for organic crop rotation. High levels of resistance of EFB33 against all pathogens shows the potential of this variety to serve as a resource in further research for identification and development of new sources of resistance against root rot diseases of pea.  相似文献   

12.
To elucidate how soft rot disease affects soil characteristics and root-associated, culturable microorganisms in Amorphophallus konjac stands, the responses of soil around roots of A. konjac with soft rot disease were investigated in stands with and without soft rot. Changes in the root-associated culturable microbial community and diversity were investigated by dilution plating. Soil characteristics were compared between stands using standard techniques. A. konjac with soft rot had higher concentrations of available soil P and K, NH4–N, organic matter and water content and lower pH compared with plants without. The community composition of root-associated culturable microorganisms differed between stands with and without soft rot. The microbial community associated with soft rot in A. konjac was characterized by four types of abundant microorganisms (Fusarium solani, Fusarium oxysporum, Pseudomonas chlororaphis subsp. aureofaciens and Stenotrophomonas pavanii) and three types of less-abundant microorganisms (Rhizobium radiobacter, Bacillus thuringiensis and Streptomyces cellulosae), and a small number of Bacillus and Streptomyces species in the rhizosphere and rhizoplane soils. Particular microbial combinations were diametrically opposed between plants with and without soft rot. The richness and diversity of root-associated culturable microorganisms were higher in the stand without soft rot than in the stand with soft rot. A. konjac soft rot led to obvious differences in the diversity and community composition of root-associated culturable microorganisms and in soil characteristics.  相似文献   

13.
Tomato leaves showing severe leaf spot symptoms have been observed and sampled in the central west and southwest Taiwan during 2015 and 2016. The symptoms were similar to those of bacterial leaf spot/late blight diseases, but only Stemphylium-like fungi were consistently isolated from the diseased tomato. Upon spray inoculation of tomato, Stemphylium-like isolates caused leaf spot symptoms identical to those of naturally infected plants, and the pathogenic isolates were successfully re-isolated from inoculated leaves. The tomato-pathogenic isolates were identified as S. lycopersici based on morphological characterization and molecular identification. S. lycopersici has been previously reported to cause gray leaf spot of tomato in the temperate regions, but the majority of S. lycopersici-caused lesions were black/dark brown rather than gray in our surveillance. Accordingly, it is suggested that S. lycopersici-caused disease of tomato is named Stemphylium leaf spot of tomato more appropriately than tomato gray leaf spot. Moreover, S. lycopersici-caused leaf spot disease on tomato has been distributed in major tomato production regions in Taiwan. The information provided by our study will be important for future breeding of tomato cultivars, especially for tomato producers in Taiwan.  相似文献   

14.
Severe outbreaks of Alternaria leaf blotch and fruit spot were recently observed in cv. Pink Lady apples in northern Israel, especially on fruit. Such severe outbreaks have not been reported from other countries. Symptoms involved cracks and rot around the calyx and external rot of the fruit body. Up to 80 % of the fruit in some orchards were affected by the disease. Microscopic examinations, fulfillment of Koch’s postulates and molecular (genetic) analyses confirmed the causal agent as Alternaria alternata f. sp. mali. The incidence of Alternaria increased as the degree of calyx cracking increased, or if fruit were both cracked and rotted. Injecting spore suspensions into the fruit produced typical rot symptoms. Injection assays of detached fruit of eight apple cultivars showed that cvs. Pink Lady and Golden Delicious were susceptible whereas cv. Jonathan was resistant. Pink Lady and Golden Delicious produced more fruit rot as the inoculum concentration increased. Rot in all three cultivars was moderate close to the skin but more severe close to the seed locule. Aqueous extracts taken from Jonathan fruit peel inhibited germ tube elongation of A. alternata f. sp. mali in vitro. This is the first report on heavy infection of Pink Lady fruit in Israel caused by A. alternata f. sp. mali.  相似文献   

15.
Ear rot with white or pink mold was found on corn (Zea mays L.). A species of Fusarium, not registered previously as a pathogen causing Gibberella ear rot of corn in Japan, was isolated from the rotted ear. The isolates, identified as F. asiaticum based on morphological characteristics and nucleotide sequences, caused white or pink mold on corn ear after inoculation. Moreover, the 3-acetyl deoxynivalenol chemotype and the nivalenol chemotype were found in the isolates. We propose to include F. asiaticum as one of the pathogens causing Gibberella ear rot of corn in Japan.  相似文献   

16.
Native Trichoderma spp. were isolated from agricultural fields in several regions of Ecuador. These isolates were characterized via morphological observation as well as molecular phylogenetic analysis based on DNA sequences of the rDNA internal transcribed spacer region, elongation factor-1α gene and RNA polymerase subunit II gene. Fifteen native Trichoderma spp. were identified as T. harzianum, T. asperellum, T. virens and T. reesei. Some of these strains showed strong antagonistic activities against several important pathogens in Ecuador, such as Fusarium oxysporum f. sp. cubense (Panama disease) and Mycosphaerella fijiensis (black Sigatoka) on banana, as well as Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease) on cacao. The isolates also showed inhibitory effects on in vitro colony growth tests against Japanese isolates of Fusarium oxysporum f. sp. lycopersici, Alternaria alternata and Rosellinia necatrix. The native Trichoderma strains characterized here are potential biocontrol agents against important pathogens of banana and cacao in Ecuador.  相似文献   

17.
In this study, we identified the causative agent of postharvest gray-mold rot in sweet persimmon fruit that were collected from Gangneung, Gangwon Province, Korea in October 2016. Symptoms included extensive growth of mycelia on post harvested fruit. The fungus was isolated from infected fruit and cultured on potato dextrose agar (PDA). For identification of the fungus, we examined morphology characteristics and rDNA sequencing analysis of the fungus and confirmed its pathogenicity according to Koch’s postulates. The results of morphological examinations, pathogenicity tests, 5.8S rDNA sequences of the internal transcribed spacer regions (ITS1 and ITS4) and the five nuclear protein-coding genes G3PDH, HSP60, RPB2, MS547 and TUB revealed that the causal agent of postharvest gray-mold rot on sweet persimmon fruit in Korea was Botrytis cinerea.  相似文献   

18.
A panicle blight with sclerotia was found on mango (Mangifera indica L.) in Okinawa Prefecture, Japan, in March 2016. Water-soaked lesions with white mycelia developed on panicles in the flowering stage; softening and decay of panicles was followed by formation of sclerotia. The fungus isolated from these sclerotia was identified as Sclerotinia sclerotiorum based on morphology and analysis of rDNA-ITS sequences. The isolate reproduced the symptoms on mango panicles in an inoculation test and was reisolated from flower stalks. This is the first report of sclerotinia rot (kinkaku-byo in Japanese) on mango caused by S. sclerotiorum in Japan.  相似文献   

19.
Sugar beet is widely grown throughout the world and represents the second largest crop used to produce sugar. Root rot in sugar beet, caused by Fusarium, significantly reduces yield, juice purity, and sugar concentration. Here, 307 Fusarium isolates were collected from sugar beet roots exhibiting typical root rot symptoms in eight provinces or autonomous regions of China from 2009 to 2012. Based on morphological characteristics and sequence data of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) and the translation elongation factor 1α (EF-1α), Fusarium oxysporum (38.4%) was identified as the most prevalent species, followed by F. solani (20.9%), and F. equiseti (18.9%). These three species were widely distributed in all eight of the provinces and autonomous regions. F. tricinctum (5.9%), F. brachygibbosum (4.6%), F. redolens (3.3%), F. proliferatum (3.3%), F. graminearum (2.3%), F. verticillioides (1.6%), F. nygamai (0.7%), and F. culmorum (0.3%) were less frequently obtained. Of the 307 Fusarium isolates, 117 representing different species and geographic locations were demonstrated to cause tip rot and vascular discoloration in sugar beet roots, with disease incidence ranging from 84.2 to 100.0% and disease index ranging from 41.94 to 75.83. This is the first detailed report of Fusarium species, in particular F. tricinctum, F. brachygibbosum, F. redolens, F. proliferatum, F. nygamai, and F. culmorum, causing sugar beet root rot in China.  相似文献   

20.
We examined the potential for biological control of black rot of broccoli, caused by Xanthomonas campestris pv. campestris (Xcc), using nonpathogenic Xanthomonas sp. strain 11-100-01 (npX) mixed with bacteriophage XcpSFC211 (pXS). Inoculation of intact broccoli plants in greenhouse trials with either npX or pXS did not control black rot. After injured plant inoculation, however, npX alone or npX with pXS significantly controlled black rot. When a mixed suspension of npX with pXS was placed on a membrane filter, then washed with distilled water and air-dried, a substantial amount of pXS adsorbed to the surface of npX. In a field trial, broccoli plants were sprayed with a suspension of npX with pXS, then inoculated with Xcc. A meta-analysis of the results from five field trials showed an integrated risk ratio (IRR, the ratio of disease incidence in inoculated broccoli plants to the incidence in control plants) of 0.69 after treatment with only npX and 0.59 with npX with pXS, indicating that black rot incidence was significantly reduced by each treatment. The difference between these two treatments was also significant. IRR was 1.24 when comparing suppression by npX with pXS and that by basic copper sulfate wettable powder; thus, their control was comparable. The combination of npX with pXS improved the preventive effect against black rot. This is the first report describing that a nonpathogenic Xanthomonas sp. strain mixed with a bacteriophage effectively controlled black rot of broccoli in field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号