首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
A Carica papaya plant with severe yellow leaf mosaic, leaf distortion, and systemic necrosis was found in the municipality of Piracicaba, state of São Paulo, Brazil. Transmission electron microscopy (TEM) analysis revealed the presence of potyvirus-like particles and bacilliform particles similar to those of the Alfamovirus genus. The potyvirus was identified as Papaya ringspot virus-type P (PRSV-P). Biological, serological, and molecular studies confirmed the bacilliform virus as an isolate of Alfalfa mosaic virus (AMV). Partial nucleotide and amino acid sequences of the coat protein gene of this AMV isolate shared 97–98% identity with the AMV isolates in the GenBank database. This report is the first of the natural infection of papaya plants by AMV.  相似文献   

3.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

4.
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viruses of wheat (Triticum aestivum L.) in the Great Plains of United States. In addition to agronomic practices to prevent damage from these viruses, temperature sensitive resistance genes Wsm1, Wsm2 and Wsm3, have been identified. However, threshold temperatures for Wsm1 and Wsm3 have not been clearly defined. To better understand these two resistance genes, wheat lines C.I.15092 (Wsm1), KS96HW10–3 (Wsm1), and KS12WGGRC59 (Wsm3) were evaluated for WSMV resistance at 27, 30, 33 and 35 °C and for TriMV resistance at 18, 21, 24, 27, 30, 33 and 35 °C. The results showed that only C.I.15092 remained resistant at 30 °C for both viruses. This line also tolerated TriMV at 33 and 35 °C with less sever symptom and lower infection rates. Wheat lines KS96HW10–3 and KS12WGGRC59 hold resistance to TriMV up to 21 °C. Molecular marker results suggested that the resistance in C.I.15092 is most probably conditioned by the resistance gene Wsm1 and additional gene(s) other than Wsm2 and Wsm3.  相似文献   

5.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

6.
Four Cucumber mosaic virus (CMV) (CMV-HM 1–4) and nine Tomato mosaic virus (ToMV) (ToMV AH 1–9) isolates detected in tomato samples collected from different governorates in Egypt during 2014, were here characterized. According to the coat protein gene sequence and to the complete nucleotide sequence of total genomic RNA1, RNA2 and RNA3 of CMV-HM3 the new Egyptian isolates are related to members of the CMV subgroup IB. The nine ToMV Egyptian isolates were characterized by sequence analysis of the coat protein and the movement protein genes. All isolates were grouped within the same branch and showed high relatedness to all considered isolates (98–99%). Complete nucleotide sequence of total genomic RNA of ToMV AH4 isolate was obtained and its comparison showed a closer degree of relatedness to isolate 99–1 from the USA (99%). To our knowledge, this is the first report of CMV isolates from subgroup IB in Egypt and the first full length sequencing of an ToMV Egyptian isolate.  相似文献   

7.
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in São Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.  相似文献   

8.
Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are well-known legume-infecting potyviruses. The incidences of BCMV and BCMNV infections were determined by ELISA in 367 seed and leaf samples which were collected in 15 common bean-growing provinces of Turkey. Of the samples tested, 67 (18.2 %) occurred to be infected with BCMV, however only 5 (1.4 %) were infected with BCMNV. A total of 45 ELISA-positive samples were selected from single-virus infected ones to determine BCMV and BCMNV pathogenicity groups (PGs) by using a set of bean cultivars that contain different combinations of resistance genes. Some BCMV populations exhibiting unusual pathogenicity were identified. One of them, named TR-180, was found to overcome resistance conferred by bc-1, bc-1 2 , bc-2 and bc-2 2 recessive alleles in common bean and assigned to PG VII. This isolate shared high (99 %) sequence identity with previously identified BCMV RU-1 and RU-1-related strains (RU1-OR-B and RU1-OR-C) according to a BLAST analysis of the nucleotide sequences of RT-PCR amplified products comprising the complete coat protein and 3′ partial NIb regions. The isolates TR-203 and TR-256 produced a distinctive reaction pattern in the dominant I gene-bearing bean cultivars Amanda and Isabella at lower (<30 °C) temperatures and were classified into PG IVb. These isolates were found to be 99 % identical to US-1 strain based on 3′ terminal nucleotide sequences of the BCMV genome. A fourth isolate, TR-243, involved mixed BCMV populations, as confirmed by partial nucleotide sequence analysis; one was classified as belonging to PG VII being similar to TR-180, and another was assigned to PG IVb. In conclusion, on the basis of both the reactions of differential bean cultivars and ELISA results, most of BCMV isolates were assigned to pathogroup PG VII and BCMNV isolates to PG VIb. This study is the first to show that four recessive resistance alleles of common bean can be overcome by a single field isolate of BCMV, and that a wide range of BCMV pathogroups are present in Turkey.  相似文献   

9.
10.
11.
12.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

13.
Potato virus Y (PVY) is the type-species of the genus Potyvirus, family Potyviridae, being reported as a major tomato (Solanum lycopersicum L.) pathogen in several regions of the world. Pepper yellow mosaic virus (PepYMV) was originally described as a resistance-breaking Potato virus Y (PVY) isolate on Capsicum annuum L. cultivars, and afterwards it was also reported infecting tomatoes in Brazil. In the present work, a search for sources of resistance to both PepYMV and PVY was conducted in a collection of 119 accessions belonging to seven Solanum (section Lycopersicon) species. This germplasm was initially evaluated to PepYMV reaction by mechanical inoculation followed by symptom observations and ELISA. Potential PepYMV resistance sources were identified for the first time in S. habrochaites, S. peruvianum, S. corneliomuelleri, S. chilense, S. pimpinellifolium, and one accession derived from an interspecific cross (S. lycopersicum x S. peruvianum). A sub-group of 24 accessions with negative serology for PepYMV was also challenged with a PVY isolate, followed by serological and molecular detection with universal primers. Solanum habrochaites ‘L.03683’ and ‘L.03684’ were the only accessions found with stable resistance to both viruses. These results confirm S. habrochaites as the most important source of multiple resistance factor(s) to distinct Potyvirus species.  相似文献   

14.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

15.
16.
Trichoderma aggressivum is an aggressive contaminant mould in the cultivation of Agaricus bisporus leading to severe reductions in mushroom yields. Production of fully colonised A. bisporus substrate in Europe is commonly carried out in large tunnels (Phase III), after which the substrate undergoes several bulk handling (mixing) operations before ending up on shelves in mushroom growing facilities. The work presented here studied the effect of Trichoderma aggressivum inoculum, substrate mixing and supplementation on Agaricus bisporus yields and evaluated four methods to detect T. aggressivum in bulk handled substrate. Inoculum dilution level was shown to correlate well with mushroom yield (P < 0.0001) with reductions of 2–6 % at the most dilute level (10?4) and 60–100 % at the most concentrated level (10?1), depending on the experiment. Supplementation, with or without T. aggressivum, had no significant effect on mushroom yield (P ≥ 0.85) but a high degree of substrate mixing was shown to significantly increase (P < 0.0001) T. aggressivum-associated crop losses. Four T. aggressivum detection methods were evaluated and a quantitative polymerase chain reaction (qPCR) method gave the most consistent and least variable results. Cycle threshold (CT) values ranged from 24 to 40, depending on the experiment and the inoculum dilution level, and false negatives (CT = 40) were reported on one occasion with the most dilute samples. The results indicate that Phase III mushroom substrate is vulnerable to infection by T. aggressivum when the fully colonised substrate is broken up and mixed during bulk handling operations, identifying a previously unidentified risk for Phase III substrate producers.  相似文献   

17.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

18.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

19.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号