首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual reproduction in fungi is controlled by mating type genes, which are located at the MAT locus. In this study, we investigated the structure of this locus in the phytopathogenic fungus Phyllosticta citricarpa, the causal agent of citrus black spot disease. Despite intensive study, its sexual state has never been observed in single-spore culture. Through analysis of the genome sequences of two individual P. citricarpa isolates, the sequence of the DNA lyase gene was identified and, as previously reported in the literature, the mating type genes were located in the 3′ flanking region of this gene. The results suggested that P. citricarpa is heterothallic, owing to the exclusive presence of the MAT1–1 or MAT1–2 gene in individual strains. In order to characterize the MAT locus, we designed primers to amplify this region. P. citricarpa was found to have complete and apparently functional copies of MAT genes, containing α-1 and HMG domains, present in different isolates. In addition to MAT1–2-1 and MAT1–1-1 genes, the MAT1–1-4 gene was located in the 5′ flanking region of the MAT1–1-1 gene and the MAT1–2-5 gene was located in 5′ flanking region of the MAT1–2-1 gene. A multiplex PCR protocol was also developed to differentiate P. citricarpa idiomorphs, which can be used in distribution and incidence studies of mating type strains, in order to determine the occurrence of sexual reproduction and to facility crossing studies. Furthermore, in Brazil, the two idiomorphs occur in a 1:1 ratio, which is expected in sexually reproducing populations.  相似文献   

2.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

3.
The most harmful hymenopteran pests of Pinus sylvestris L. are conifer sawflies from the family Diprionidae, including the widespread Diprion pini (L.). Natural enemies of this pest are still poorly known in many European areas where attacks occur. We studied the egg parasitoids of D. pini at four sites in two mountainous areas of Spain: the Sierra de Francia (western Spain) and the Sierra de Albarracín (eastern Spain). At all sites, the dominant egg parasitoid was Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), whereas other three chalcidoid species were rare. All these species were previously recorded in association with D. pini, but we report here their first record in Spain. Neochrysocharis formosa attacked up to 32.3% of egg clusters of D. pini in the Sierra de Albarracín and 18.5% in the Sierra de Francia. In the attacked egg clusters, this species parasitized up to 35% of eggs in the Sierra de Albarracín and 23.7% in the Sierra de Francia, with a marked female-biased sex ratio. Contrary to the clustered pattern of parasitism observed for N. formosa while attacking other gregarious diprionids, the oviposition in egg clusters of D. pini followed a random pattern, probably due to the froth roof (spumous coating) that covers its eggs and interferes with the egg-searching behavior of females. Indeed, other parasitoid species of D. pini have been reported to behave similarly.  相似文献   

4.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

5.
Dothistroma needle blight (DNB) is a serious disease of the Pinaceae, mainly Pinus species, caused by the fungi Dothistroma septosporum and D. pini. Both species are regarded as invasive forest pathogens worldwide, with rising incidence in central and northern Europe over the last three decades. In this work, 29 sites were investigated between 2013 and 2015 in south-western Turkey. Morphological examination of needles confirmed DNB infection (i.e., Dothistroma conidiospores observed) at 18 sites, and a total of 108 Dothistroma sp. isolates were obtained from 11 of the sites. Host age seemed to be an important factor in both occurrence and severity of DNB in Pinus brutia forests. Continuous rainy days, especially in December, may increase severity of disease; however, extreme rain events may reduce available conidiospores on plant tissues or in the air. Species-specific mating type primers showed that all isolates were D. septosporum; D. pini was not detected. The mating type ratio was close to 1:1, indicating sexual recombination was occurring. Eleven microsatellite markers revealed 59 unique multilocus haplotypes (MLHs) among the 73 isolates originating from different conidiomata. The majority of MLHs were represented by a single isolate (n = 52) and only one MLH was shared between two localities. Analyses showed high genetic diversity, isolation-by-distance, and clear population clusters. These findings suggest that D. septosporum is well established in south-western Turkey and is probably not a recent introduction.  相似文献   

6.
Cochliobolus lunatus (teleomorph: Curvularia lunata) is an important plant pathogenic fungus that causes the maize foliar spot, resulting in serious yield losses. In ascomycetes, a single mating-type (MAT) locus with two idiomorphs controls sexual development. The structure and arrangement of the MAT genes were examined to understand the MAT locus of C. lunatus. MAT loci were MAT1–1-1 or MAT1–2-1, flanked upstream and downstream by regions encoding GTPase activating protein, pyridoxamine phosphate oxidase domain, and β-glucosidase. A MAT1–1 or MAT1–2 idiomorph was identified in single isolate, and sexual reproduction in vitro indicated that the species was heterothallic. In vitro crossing between isolates with opposite MATs produced perithecia, asci, and ascospores. A multiplex MAT-specific PCR method was developed and used to test mating-type genes in 177 C.lunatus isolates collected from China. The ratio of isolates of each mating-type in China was consistent with a 1:1 ratio.  相似文献   

7.
Botrytis cinerea is a complex species prone to fungicide resistance and characterized by enormous genetic diversity. During 2013, 220 B. cinerea isolates causing gray mold were collected from greenhouse-grown crops in the regions of Ammochostos, Larnaca, and Limassol (Cyprus). Sensitivities of the sampled populations to seven botryticides with different modes of action were screened in vitro. The results of this in vitro screening highlighted the widespread phenomenon of fungicide resistance in greenhouses, since only 8.6 % of the isolates were sensitive to all botryticides. Resistance to thiophanate-methyl was the most prevalent, with frequencies ranging from 53.8 % to 80 %. Similarly, high resistance frequencies were observed for pyraclostrobin (27.1 to 78.9 %) and boscalid (28.2 to 66.2 %). Multiple fungicide resistant phenotypes were predominant, covering 67.3 % of the population, with frequencies of 80.0, 37.5, 53.8, 83.1, and 60.2 % in cucumber, eggplant, green bean, strawberry, and tomato, respectively. No fludioxonil-resistant isolates were observed. Botrytis cinerea and Botrytis group S genotypes comprised the gray mold population. B. cinerea was predominant within cucumber, eggplant and strawberry, whereas both genotypes were in equilibrium in green bean and tomato. However, Botrytis group S was found in all hosts. B. cinerea was the most prevalent in the majority of fungicide resistance phenotypes from strawberry, while genotype distributions within tomato were generally more balanced. B. pseudocinerea was not detected in the sampled population. Overall, frequency of the mating type allele MAT1–1 was higher to MAT1–2, underlying their unequal distribution in the population. However, cases of 1:1 distribution were apparent within particular subpopulations, suggesting that mating in the field cannot be excluded.  相似文献   

8.
A survey was conducted in 16 fields cultivated with broad bean (Vicia faba L.) and garden pea (Pisum sativum L.) in nine localities of Apulia, southern Italy, to determine whether annual weeds were susceptible to the pea cyst nematode (PEACN), Heterodera goettingiana, and could therefore serve as alternate host for the nematode. The results of this study showed that black medick (Medicago lupulina L.) is a good host for the nematode increasing its population levels in the soil in the absence of the primary hosts. The identity of the PEACN was confirmed by integrative taxonomic approaches (classical, and molecular), resulting identical in all cases (broad bean and garden pea, as well as the spontaneous black medick infections). The phylogenetic analyses using ITS and coxI gene regions strongly support the identification of the populations of H. goettingiana from Italy. Also, ITS and coxI gene sequences were obtained from the same cyst, confirming the species identity in comparison to other nematodes and populations in the Goettingiana group, demonstrating that ITS and coxI gene regions of the PEACN are suitable molecular markers for accurate and unequivocal identification of the PEACN. Reproduction and histopathological analyses demonstrated a good host-suitability of black medick to the PEACN. This record enlarges the relatively narrow host-range of the pea cyst nematode and indicates the need to control M. lupulina to avoid the increase of the nematode population in the absence of the main host crop.  相似文献   

9.
The reniform nematodes of the genus Rotylenchulus are semi-endoparasites of numerous herbaceous and woody plant roots and distributed in regions with Mediterranean, subtropical and tropical climates. In this study, we provide morphological and molecular characterisation of three out of 11 valid species of the genus Rotylenchulus: R. macrodoratus, R. macrosoma, and R. reniformis from Greece (Crete), Italy and Spain. The overall prevalence of reniform nematodes in wild and cultivated olives in Greece, Italy, and Spain was 11.5%, 19.0% and 0.6%, respectively. In Greece, R. macrodoratus and R. macrosoma were detected in cultivated olive with a prevalence of 8.2% and 6.2%, respectively, but none of them were found in wild olive. This is the first report of R. macrosoma in Greece. Only one reniform nematode species was detected in olive from Italy and Spain, viz. R. macrodoratus and R. macrosoma, respectively. The parasitism of R. macrosoma on hazelnut in northern Spain was also confirmed for the first time. This study demonstrates that R. macrodoratus and R. macrosoma have two distinct rRNA gene types in their genomes, specifically the two types of D2-D3 for R. macrosoma and R. macrodoratus, the two types of ITS for R. macrodoratus and the testing of the ITS variability in other R. macrosoma populations in different countries. Rotylenchulus macrosoma from Greece and Spain showed differences in nucleotide sequences in the ITS region and D2-D3 of 28S rRNA gene.  相似文献   

10.
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity in the southern United States. The main form of pathogen control is the use of stem canker resistant soybean varieties. In this study, strains of Diaporthe and Phomopsis were isolated from stem and seeds of soybean in different locations in South America during the years 1989–2014. Genomic DNA from 26 isolates were analyzed by PCR-restriction fragment length polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP) techniques, and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA. The molecular analysis of ITS sequences by alignment with those of ex-type strains deposited in GenBank and morphological characteristics allowed the identification of Phomopsis longicolla, D. phaseolorum var. sojae, D. caulivora and D. aspalathi. An analysis of the pathogenicity of 13 isolates of D. aspalathi inoculated in soybean genotypes carrying different resistance genes to stem canker (Rdm1, Rdm2, Rdm3, Rdm4, Rdm5 and Rdm?) enabled us to identify the occurrence of at least three races of D. aspalathi occurring in Brazil. Among the isolates identified as D. aspalathi, both molecular and phenotypic analyses showed clustering depending on the date of collection and pathogenicity, which revealed the existence of variability of the pathogen.  相似文献   

11.
A nematode survey conducted in 2013 in Algeria, revealed that potato cyst nematodes (PCN) and cereal cyst nematodes (CCN) are widely distributed in several potato and cereal growing regions of the country. Sixteen PCN populations from five localities and five CCN populations from four of these localities were collected and characterized at the morphological and molecular levels. The PCN populations were identified as Globodera rostochiensis and G. pallida occurring separately or in mixed populations. Two species of CCN were detected. Heterodera avenae was found in four localities, whereas H. hordecalis only in one locality in association with H. avenae. The morphological and morphometric identification of PCN and CCN was confirmed by diagnostic ITS-RFLP profiles and sequencing. Phylogenetic analysis of the ITS, D2-D3 expansion domains of the 28S rRNA gene and 18S rRNA gene was made for PCN and CCN populations. Globodera pallida and G. rostochiensis from Algeria show great similarity with European and South American populations. Because of the high divergence among Algerian populations of G. pallida and G. rostochiensis it can be assumed that they were multi-introduced in Algeria. The most divergent population of G. pallida, that formed a well-separated group with some populations from Chile and Peru, suggests a later or independent introduction of this population into Algeria. Heterodera avenae and H. hordecalis formed a well-supported cluster with the corresponding populations.  相似文献   

12.
Laboratory and nursery experiments were conducted to identify the causal agent of a needle blight of Pinus wallichiana, a species native to the Western Himalayas. The pathogen was identified as Myrothecium verrucaria, on the basis of morphological, cultural and molecular characterization. BLAST analysis of ITS sequences of the pathogen revealed maximum sequence identity of 99% with M. verrucaria. The sequence is the first of this fungus from P. wallichiana. Phylogenetic analysis grouped all M. verrucaria isolates in a single clade; M. roridum and M. inundatum clustered in separate clades. The pathogen grew optimally at 25 ± 1 °C on oat meal agar, pH 5.5. Inoculation experiments with M. verrucaria demonstrated pathogenicity on Pinus halepensis, Cedrus deodara and Cryptomeria japonica, in addition to Pinus wallichiana.  相似文献   

13.
Ditylenchus dipsaci is a species complex including diploid and polyploid individuals. The onion race of D. dipsaci is a sensu stricto group and has a wide range of host spectrum. Identification of the D. dipsaci onion race is difficult using morphological and morphometrical methods. Species specific primers are mostly used in molecular approaches for identification of D. dipsaci populations. Fifty one morphologically selected Ditylenchus spp. populations from onion production areas in Turkey were subjected to molecular identification using four D. dipsaci species specific primer sets (PF1-PR1, PF2-PR2, DdpS1-rDNA2, DitNF1- rDNA2, H05-H06) targeting 5.8S and 18S rDNA, ITS1 and flanking ITS regions. Thirty nine percent of the nematode samples were positive with four primers tested, while four of the nematode samples gave specific bands with H05-H06 primers. Ditylenchus dipsaci sensu stricto was identified with specific primer sets in Adana, Hatay, Tekirdag, Bursa, Aksaray, Karaman, Eskisehir and Ankara provinces in Mediterranean, Trace, Aegean and Central Regions in Turkey.  相似文献   

14.
A new species in the genus Ditylenchus, D. stenurus n. sp. collected from western Iran, is described and illustrated herein based on morphological and molecular studies. The new species is characterised by a body length of 772 (663–863) μm, delicate stylet 6 (5–7) μm long, six lines in the lateral field. Median bulb of pharynx well-developed, muscular with crescentic valve. Post-vulval uterine sac well-developed, 35 (30–45) μm long, female tail elongate-conoid, becoming narrow suddenly with finely rounded terminus. The new species comes close in morphology and morphometrics to five known species of the genus, namely D. arachis, D. caudatus, D. clarus, D. myceliophagus, and D. nanus. DNA sequencing data was obtained on the partial 18S, D2/D3 expansion segments of the 28S rRNA gene and internal transcribed spacer (ITS). The phylogenetic relationships of this species with other Ditylenchus spp. using partial 18S–rDNA and D2/D3 indicated that D. stenurus n. sp. clustered together with several species belongs to the D. triformis-group i. e. D. africanus, D. destructor and D. halictus: all sharing a rounded tail terminus and six lines in lateral fields.  相似文献   

15.
Cyst nematodes obtained from commercial carrot fields in Ontario (Canada) and northern and southern Italy were subjected to morphological and molecular examination. Morphology of cyst cone tops, males and second-stage juveniles (J2) indicated the nematode species was the Carrot Cyst Nematode (CaCN), Heterodera carotae. The sequence of the Internal Transcribed Spacer (ITS), D2-D3 region of the 28S gene of ribosomal RNA, cytochrome oxidase I of mitochondrial DNA (coxI), and a heat shock protein gene (hsp90), from single cysts were also examined. Sequences of ITS and D2-D3 placed all the nematodes with Heterodera carotae and other Heterodera spp. belonging to the Goettingiana group in the same clade. The novel nine coxI sequences obtained also clustered in a well-supported phylogenetic clade for H. carotae. Similarly, the six new hsp90 sequences of H. carotae generated in this study were placed in a well-supported clade (PP = 1.00) together with other two sequences of H. carotae from Greece. Restriction Fragment Length Polymorphism (RFLP) of ITS-PCR products gave a restriction pattern for RsaI different than H. carotae but the other 6 restriction patterns were similar as described in former research. A diagnostic conventional PCR method was developed based on a primer set to be specific for H. carotae using coxI sequence. These primers were also used in real time PCR to generate a melt curve specific to H. carotae. Limit of detection for CaCN in conventional PCR reaction was a single J2.  相似文献   

16.
Arceuthobium sichuanense is an aerial parasitic plant (dwarf mistletoe) which causes severe damage to spruce forests on the Qinghai-Tibet Plateau. Picea crassifolia and Picea purpurea, two main host species of A. sichuanense, have different growth characteristics and elevational distributions. The effects of A. sichuanense infection on P. crassifolia and P. purpurea trees were evaluated by examining needle and current-year shoot morphology, needle water use efficiency and needle nitrogen concentration, with 30 needle samples, 30 current-year shoot samples and 10 A. sichuanense aerial shoot samples for each host species. The most apparent effects were significant reductions in both needle size and current-year shoot length. The high degree of correlation in foliar δ 15N values between the dwarf mistletoe and its host trees indicated that nitrogen in the dwarf mistletoe was derived entirely from its host. Percent reductions in needle and current-year shoot length were smaller for P. purpurea than for P. crassifolia, possibly suggesting that P. purpurea exhibits a lesser capacity to accommodate the parasitic effects of mistletoe infection by adjusting the growth of needles and current-year shoots. The reductions in needle nitrogen concentration and δ 13C values were lower in P. purpurea than in P. crassifolia, indicating that P. purpurea suffered more nitrogen and water stresses and exhibited lower vigor compared to P. crassifolia. Our results demonstrated that P. purpurea may suffer more negative effects induced by dwarf mistletoe infections at needle and branch levels than P. crassifolia.  相似文献   

17.
During the summers of 2013–2014, symptoms similar to viscid rot and upright disease were observed on cranberries (Vaccinium macrocarpon) on one plantation in central Poland. The associated fungi were isolated from symptomatic plant tissue. On the basis of morphological and cultural characteristics and the ability of isolated fungi to elicit viscid rot symptoms on cranberry fruits, they were classified as the genus Diaporthe. Further analysis of ITS sequence data allowed for the classification of the newly obtained isolates as D. vaccinii. Additional analysis of genetic diversity using five RAPD and eight ISSR primers constituted additional confirmation of genetic distance existing between closely related D. vaccinii and D. eres species, enabling their differentiation.  相似文献   

18.
Aureobasidium isolated from Vitis vinifera (cv Chardonnay) grapevine tissues were characterised using morphological and molecular techniques. Species level identification of 29 isolates was accomplished by partial amplification and sequencing of the ITS region (ITS1–5.8S–ITS2) using universal primers ITS1 and ITS4. A comparison of nucleotide sequences using BLAST followed by phylogenetic analysis revealed that all isolates examined were Aureobasidium pullulans. Strain level discrimination of a total of 100 epiphytic Aureobasidium isolates including three reference strains was successfully carried out using two inter simple sequence repeat (ISSR) primers, (AAC)5 and (GTG)5 and the Intron Splice Junction R1 (ISJ-R1) primer in which 24, 24 and 15 scorable bands were produced for each primer, respectively. The high level of genetic variation recorded among the isolates further highlighted the high levels of strain diversity among A. pullulans residing on grapevines. Thirty-two epiphytic Aureobasidium isolates were examined for their ability to inhibit the growth of Greeneria uvicola, responsible for bitter rot of grapes. Using an in-vitro dual-culture antagonism assay, all isolates inhibited the growth of G. uvicola (Isolates DAR 77272 and DAR 77273) with inhibition ranging from 15 to 85%. Three Aureobasidium isolates were then examined for their ability to inhibit G. uvicola when co-inoculated onto detached berries, leaves and grape bunches growing on potted vines in a glass house. All isolates reduced the severity of bitter rot infection. The results indicate that A. pullulans has the potential to suppress bitter rot of grapes.  相似文献   

19.
Genetic variability within Septoria carvi isolates obtained from various organs of caraway cultivated in south-eastern and central Poland was studied using the RAPD-PCR technique. The tests were performed using randomly selected primers. The DNA profiles obtained using four primers proved useful in determining genetic variability among the genotypes of Septoria carvi isolates. The present study characterized the differences in the nucleotide sequence within the internal transcribed spacer region of rDNA (ITS1, 5.8S, ITS2) of selected S. carvi isolates and reference strains of Septoria spp. Moreover, eight isolates were sequenced for three loci: actin, calmodulin and translation elongation factor 1-alpha, and the obtained sequences were compared with the sequences of Septoria reference strains affecting other plants of the family Apiaceae. Phylogenetic analysis showed distinct differences of the tested isolates, which allowed to treat them Septoria carvi species affecting the above-ground organs of caraway Carum carvi L. This study is the first report on the genetic characteristics of the species S. carvi.  相似文献   

20.
Metarhizium guizhouense PSUM02 treated males of Bactrocera latifrons were investigated for the mating competition among males and mating choice by female flies to develop an auto-dissemination for the control of B. latifrons. In the present study, on day 1–4 of experiment, M. guizhouense–treated male flies were equally competitive with the normal male flies as we did not observe any differences in mating by treated and normal male flies of B. latifrons. Further, mating competitiveness were found low in treated adult male B. latifrons than normal male B. latifrons from 5th days of treatment until death. Kaplan-Meier survival analysis of treated male flies gave average survival times (AST) of 4.3?±?0.1 days, while the healthy female and male flies in the same cage showed AST of 9.3?±?0.3 and 8.3?±?0.4 days, respectively. The AST of untreated flies in control experiment ranged from 14.2–14.5 days. In mating preference experiment, M. guizhouense–treated male flies were chosen by virgin female than gravid female flies for mating. The treated male flies caused mortality in both virgin and gravid female flies in the same cage with AST of 4.4?±?0.1, 5.6?±?0.1 and 7.4?±?0.2 days, respectively, while untreated flies showed AST ranged from 13.9–14.3 days in control. The treated male flies could transmit the fungus infection to both untreated female and male flies as well as in virgin and gravid female flies by mating and contact. Our experiments showed the potentiality of M. guizhouense PSUM02 in management of B. latifrons by auto-dissemination with treated male flies, which transmit the fungus to a healthy population to reduce insect pest infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号