首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxytetracycline (OTC) in shrimp shells may be dispersed to the environment as shrimp shred old cuticle in growout ponds. The study aims to assess the kinetics of OTC accumulated in shrimp shell. Sub‐adult male Litopenaeus vannamei in the C–D0 molting stage, were force fed with medicated feeds at various accurate dose levels that included 50, 500 and 1000 mg/kg‐body weight (BW). In addition to hemolymph, hepatopancreas and muscle were serially collected for 50 mg/kg‐BW‐dose group while cuticle was sampled for higher dose levels. All were assayed for OTC by a validated high‐performance liquid chromatography (HPLC) method. Mineral contents in shell samples of 500 mg/kg‐BW‐dose were also determined. The bioavailability markedly decreased with increasing dose due to incomplete dissolution and/or mild dysfunction in absorption. Administered doses, 2.69 and 2.25%, ended up in the shell after dosing with 500 and 1000 mg/kg‐BW, respectively. OTC data after a dose of 50 mg/kg‐BW was fitted into a three‐compartment model with an added shell compartment with r2 of 0.9920. The model was successfully extrapolated to predict OTC distribution in shell at higher doses. In addition, there was evidence that OTC may disturb the biomineralization process via complex formation with calcium and magnesium lowering the exoskeleton mineral contents.  相似文献   

2.
土霉素在锯缘青蟹体内的药物代谢和消除规律   总被引:1,自引:0,他引:1  
采用高效液相色谱法检测土霉素,研究土霉素口灌给药途径下在锯缘青蟹体内的药代动力学。锯缘青蟹口灌给药土霉素50 mg/kg后,其血浆、肌肉和肝胰脏中的药峰浓度分别为16.78±1.98 mg/L、9.39±2.12μg/g和32.12±6.12μg/g,达峰时间分别为4 h、8 h和4 h。血浆中土霉素浓度-时间关系曲线符合一级吸收的二室开放动力学模型。土霉素在锯缘青蟹体内分布广泛,其表观分布容积(Vd)为2.129 L/kg;分布半衰期(t1/2α)和消除半衰期(t1/2β)分别为3.200 h和47.856 h,总体清除率(CLs)为0.063 mL/(kg.h)。肌肉和肝胰脏中土霉素浓度与时间关系的药动学参数采用统计矩原理分析,其消除半衰期(t1/2 z)分别为60.145 h和71.009 h,总体清除率(CLz)分别为0.054 g/(kg.h)和0.037 g/(kg.h)。土霉素在精巢和卵巢中达峰时间分别为8 h和12 h,峰浓度分别为9.83μg/g和10.26μg/g。给药后24 d时,血浆、肌肉、肝胰脏、精巢和卵巢中土霉素含量都已低于0.10μg/g。土霉素在锯缘青蟹体内消除比较缓慢。  相似文献   

3.
盐酸沙拉沙星在凡纳滨对虾体内药动学与生物利用度   总被引:1,自引:0,他引:1  
采用RP-HPLC法研究了在盐度33、水温(28.0±1.0)℃的自然海水中盐酸沙拉沙星单剂量围心腔注射(剂量10 mg·kg-1)和单次药饵投喂(剂量30 mg·kg-1)给药后在凡纳滨对虾(Litopenaeus vannamei)体内的药动学与生物利用度。围心腔注射给药后,血淋巴中药时曲线较适合用二室模型来拟合,而药饵投喂给药后血淋巴中药时曲线较适合采用一级吸收二室模型来拟合。药饵给药下盐酸沙拉沙星在凡纳滨对虾体内的生物利用度(F)为61.6%。药饵投喂给药下大量药物分布到了肝胰腺,肝胰腺血药峰浓度(Cmax)和AUC0-t分别是血淋巴的24.4倍和18.7倍,分别是肌肉的51.9倍和62.0倍;药物在肝胰腺和肌肉中消除都很快,分别在给药后5 d 和36 h低于0.1 mg·kg-1。由此可见,盐酸沙拉沙星药饵给药下吸收好,达峰值高和生物利用度好,且在肌肉和肝胰腺组织中消除快,是较为理想的防治对虾细菌性疾病的抗菌药物。  相似文献   

4.
The pharmacokinetics of oxolinic acid and oxytetracycline were examined in kuruma shrimp (Penaeus japonicus) after intra-sinus (10 and 25 mg/kg, respectively) and oral (50 mg/kg) administration. The shrimp were kept in tanks with recirculated artificial seawater at a salinity of 22–23 ppt. The water temperature was maintained at 25±0.6 °C. The hemolymph concentrations of both drugs after intra-sinus dosing were best described by a two-compartment open model. The distribution and elimination half-lives (t1/2 and t1/2β) were found to be 0.59 and 33.2 h for oxolinic acid and 0.45 and 24.7 h for oxytetracycline, respectively. The apparent volume of distribution at a steady state (Vss) and total body clearance (CLb) were estimated to be 1309 ml/kg and 28.8 ml/kg/h for oxolinic acid and 748 ml/kg and 22.7 ml/kg/h, respectively. The hemolymph concentration–time curves after oral administration did not fit by the nonlinear least squares method using one- and two-compartment model with first-order absorption in either of the drugs. The peak hemolymph concentration (Cmax), the time to peak hemolymph concentration (tmax) and the elimination half-life were found to be 17.8 μg/ml, 7 h and 34.3 h for oxolinic acid and 24.3 μg/ml, 10 h and 33.6 h for oxytetracycline, respectively. The bioavailability (F) after oral administration was 32.9% for oxolinic acid and 43.2% for oxytetracycline. The hemolymph protein binding in vivo was determined to be 36.7±8.5% for oxolinic acid and 22.9±4.8% for oxytetracycline.  相似文献   

5.
Toxicokinetics has demonstrated abnormal signs in drug distribution/disposition without waiting until the drug damages the tissues/organs. It is a study of the kinetic assessment of administering high‐dose of oxytetracycline (OTC) to white shrimp. Male Penaeus vannamei in the C–D0 molting stage, were force fed with medicated feeds at various accurate dose levels including 500, 1000, and 2500 mg/kg‐body weight (BW). After dosing with different time intervals, hemolymph, muscle, and hepatopancreas were collected, and assayed for OTC by validated high‐performance liquid chromatography method. The simulated profile based on the maximum recommended dose was tested to approach the systemic level where the drug was anticipated not to cause significant toxic responses. OTC kinetic profiles in the hemolymph were fitted into the flow limited model having r2 value between 0.8341 and 0.9373. The relative affinities for the muscle and hepatopancreas changed at dose level exceeding 1000 mg/kg BW. Although hepatopancreatic clearance was non‐linearly related with dose, the persistence of OTC in muscle after 2500 mg/kg BW dosing was observed to indicate abnormalities in drug distribution/disposition. It was hypothesized that the pharmacokinetic alteration after extreme dosing was because of induction of functional abnormalities in hepatopancreas. In addition, a single administration of OTC at 1000 mg/kg BW was anticipated to be a tolerated dose.  相似文献   

6.
The white shrimp, Litopenaeus vannamei, has become a very important species for the development of shrimp aquaculture in Northwest Mexico. However, viral and bacterial diseases are considered a major threat to the development of this industry. In the present study a trial was conducted to evaluate the tissue distribution, maximum concentration, and elimination of the widely used antibiotic oxytetracycline (OTC) in L. vannamei using indoor tanks under laboratory-controlled conditions. OTC was given to shrimp simulating a therapeutic treatment through medicated feed for 14 days followed by a period of feeding without antibiotic for another 14 days to evaluate the elimination pattern. Samples of hemolymph, muscle, and hepatopancreas were taken from medicated animals every two days for 28 days. All tissues were removed and frozen immediately in liquid nitrogen. OTC levels were analyzed by High Performance Liquid Chromatography (HPLC). Results showed an important OTC increase during consumption of medicated feed in all examined tissues. OTC maximum concentrations were 33.54 ± 11.19, 194.37 ± 16.11, and 18.79 ± 5.87 µg g− 1 for muscle, hepatopancreas and hemolymph, respectively. Although the highest OTC level was found in the hepatopancreas, it required only two days after the start of dosing to reach this value, whereas the maximum OTC for muscle and hemolymph was detected after eight days of dosing. Ten days after the cessation of medicated feeding, the drug content in the shrimp tail muscle was under the detectable limit for the method (0.01 µg g− 1 of OTC).  相似文献   

7.
A study was conducted on the stability of monoclonal antibody (MAb) in the hepatopancreas and hemolymph of Penaeus monodon and its effect on protection against white spot syndrome virus (WSSV) upon challenge. MAb C-5 raised against WSSV was purified and coated onto a commercial shrimp feed at dosages of 5, 10 and 15 mg/kg feed. The feed was fed to P. monodon and stability of the MAb in hepatopancreas and hemolymph was determined by immunodot and Western blot. Immunodot results indicated the presence of MAb for 2 h post-feeding in hepatopancreas and hemolymph which was dose-dependent. MAb was also detected in hemolymph by Western blot up to 1 h post-feeding. Shrimp fed with MAb were challenged with WSSV by oral and injection methods. In shrimp fed with 15 mg antibody/kg feed (0.45 μg MAb/g shrimp/day) WSSV infection significantly delayed both in oral and injection challenges with a survival of 65 and 70 % (p < 0.05), respectively, during 15 days post-challenge. MAb was stable in shrimp for passive immunization against WSSV and could be a potential tool for prophylaxis against the virus.  相似文献   

8.
The present study was designed to explore pharmacokinetics (PK) of enrofloxacin and its metabolite ciprofloxacin in Pacific white shrimp Litopenaeus vannamei after multiple-dose oral administration of enrofloxacin (30 mg/kg dose per 12 h and continuous feeding for 3 days). Enrofloxacin and ciprofloxacin concentrations in hemolymph, hepatopancreas, and muscle of the shrimp were simultaneously determined by high-performance liquid chromatography. PK parameters were analyzed based on statistical moment theory. Meanwhile, the relationship of pharmacokinetics/pharmacodynamics (PK/PD) was established based on drug concentration of hemolymph and in vitro antibacterial activity (MIC value). Results showed faster absorption of enrofloxacin in hemolymph (Tmax?=?1 h) and muscles (Tmax?=?1 h) than that in hepatopancreas (Tmax?=?3 h) after the first oral administration. In multiple-dose oral administration, slight accumulation of enrofloxacin occurred in the hemolymph and hepatopancreas, while in the muscle, enrofloxacin concentration showed a significant decline following multiple administration. Tissue distribution of enrofloxacin and ciprofloxacin both followed the order hepatopancreas?>?hemolymph?>?muscle, with significantly higher ciprofloxacin concentration in hepatopancreas than in hemolymph (approximately 10-fold) and muscles (approximately 50-fold), indicating that the hepatopancreas is the main organ involved in metabolism of enrofloxacin in Pacific white shrimp. After multiple-dose administration, Cmax/MIC and AUC0–24/MIC values showed that the therapeutic regimen in this study could be remarkably effective in prevention and treatment of Vibrio infection in Pacific white shrimp.  相似文献   

9.
Abstract. The objective of this pharmacokinetic study was to investigate absorption, distribution, elimination and bioavailability of oxytetracycline (OTC) in carp, Cyprinus carpio L ., after different routes of administration, OTC was administered intravenously (i.v.), intramuscularly (i.m.) and orally at 60 mg/kg body weight. OTC levels were determined in plasma and several tissues. Analysis of the plasma drug concentration-time curves following i.v. OTC injection revealed three distinct phases. A three-compartment open model was used to derive pharmacokinetic parameters. Compared to mammals, a very extended final elimination half-life was observed (139.8±38.1 h). Following i.m. OTC administration, Cmax was 56.8±10.9μg OTC/ml at 14 h post-injection. The Vd area was 2.1 ± 0.66 1/kg. Extreme differences were observed with respect to bioavailability following i.m. and oral administration; approximately 80 and 0.6%, respectively. Following i.m. injection tissue OTC determinations revealed that the drug was accumulating in pronephros, bone tissue and scales. After 21 days the OTC concentrations were 2.9±0.8, 5.2±0.3 and 4.7±3.1 μg/ ml, respectively. In tissue samples from the dorsal region (muscle), including the injection site, OTC could not be demonstrated at that time. The pharmacokinetic data are discussed in relation to the susceptibility of the immune system of fish for modulation.  相似文献   

10.
海水和饲料中Pb在凡纳滨对虾体内的富集与释放特性   总被引:1,自引:0,他引:1  
为获知海水和饲料中重金属Pb与凡纳滨对虾(Litopenaeus vannamei)各组织间的富集与释放特性,应用生物富集双箱动力学模型,模拟凡纳滨对虾分别在海水中Pb浓度为0.0015 mg/L(B0)、0.0080 mg/L(B1)、0.0466 mg/L(B2)和0.2302 mg/L(B3),饲料中Pb浓度为2.089 mg/kg(A0)、2.750 mg/kg(A1)、6.103 mg/kg(A2)和14.520 mg/kg(A3)的驯养过程中,其肝胰腺、外骨骼和肌肉对Pb的生物富集与释放特性,为Pb在凡纳滨对虾体内的分布、富集和迁移提供理论依据,为其安全生产提供指导意义。同时通过非线性拟合得到凡纳滨对虾对海水和饲料中Pb的富集速率常数K1、排出速率常数K2、生物富集系数BCF、生物半衰期B_(1/2),富集平衡时生物体内Pb含量CAmax等动力学参数。结果显示:(1)投喂任一浓度饲料时,B0、B1、B2组凡纳滨对虾肌肉、外骨骼和肝胰腺组织中Pb含量均小于限量值0.5 mg/kg,而在B3海水浓度中,随着投喂饲料浓度的增大,各组织中Pb累积量高于限量值(0.5 mg/kg)的时间出现得越来越早;肝胰腺中Pb的释放速率高于肌肉和外骨骼的释放速率。(2)用SPSS18.0对饲料Pb含量、海水浓度、富集时间进行三因素重复测量方差分析显示,饲料浓度、海水浓度和富集时间对凡纳滨对虾各组织中Pb的富集含量出现显著性差异[除了饲料浓度对凡纳滨对虾外骨骼组织中Pb富集主效应达到边缘显著(F=2.351,P=0.071)],且饲料、海水及时间交互效应分析显示,三者交互作用显著。(3)用SPSS18.0对不同组织中Pb的富集含量、饲料浓度、海水浓度和富集时间进行多元回归分析,结果显示:在凡纳滨对虾各组织间Pb富集过程中,海水中Pb浓度的贡献率大于饲料中Pb浓度的贡献率。(4)达到平衡状态下,投喂A0饲料浓度,生长在B0~B3组海水中,凡纳滨对虾肌肉组织中Pb含量为0.128~2.981 mg/kg,肝胰腺组织中Pb含量为0.399~4.765 mg/kg;生物学半衰期(B_(1/2))范围分别为5~7 d和3~7 d。投喂A2饲料浓度,生长在B0~B3组海水中,凡纳滨对虾肌肉组织中Pb含量为0.380~1.000 mg/kg,肝胰腺组织中Pb含量为0.288~5.355 mg/kg;生物学半衰期(B_(1/2))范围分别为2~7 d和2~5 d。理论平衡浓度下,肝胰腺组织中含量均大于肌肉。  相似文献   

11.
以平均体重为10.50±1.75g的凡纳滨对虾为研究对象,分别在盐度为0、15和30的水体中用同一种饲料喂养20d,探讨不同盐度对凡纳滨对虾肌肉及血淋巴游离氨基酸组成的影响。结果表明,盐度在0、15和30变化时,凡纳滨对虾血淋巴中总游离氨基酸总量随盐度升高而显著增加(P〈0.05);甘氨酸、谷氨酸、精氨酸和丙氨酸是凡纳滨对虾血淋巴中主要的游离氨基酸成分,其含量随盐度的增加而急剧增加。盐度为0、15和30时,凡纳滨对虾肌肉中游离氨基酸总量随着盐度的增加有增加趋势,但无显著性差异(P〉0.05)。甘氨酸、亮氨酸、苯丙氨酸及精氨酸的含量随盐度由0、15、30的增加而显著增加(P〈0.05);其他氨基酸在盐度0、15和30增加时,虽无显著性增加(P〉0.05),但大部分氨基酸有增加趋势。当盐度在0、15和30变化时,游离甘氨酸、谷氨酸、精氨酸和丙氨酸是凡纳滨对虾体内渗透压调节的主要氨基酸。  相似文献   

12.
Experiments were conducted to determine the dietary zinc requirement of Penaeus vannomri and evaluate the effects of phytate on zinc bioavailability. Prior to initiation of the growth trial, 20-day-old P. vonnamei postlarvae (mean weight 0.0032 g) were fed a casein-gelatin based semi-purified diet lacking zinc supplementation but containing 18 mg Zn/kg diet for one week. Subsequently, juveniles (mean weight 0.058 g) were fed one of seven diets containing either supplemental zinc (0, 15, 30, 60 mg/kg diet) without phytate or supplemental zinc (0, 60, 200 mg/kg diet) with 1.5% phytate for 33 days. Weight gain was greatest in shrimp fed 15 mg supplemental Zn/kg diet. In the absence of dietary phytate, zinc concentrations in the hepatopancreas of shrimp were maximized when zinc was supplemented at levels greater than or equal to 15 mg Zn/kg diet (33 mg total Zn/ kg). Supplementation of 1.5% phytate to the diet did not have a significant effect on growth or zinc concentrations in the carapace; however, it did depress zinc levels in the hepatopancreas. Supplementation of 200 mg Zn/kg diet was required to overcome the depressed bioavailability of zinc caused by the presence of dietary phytate and return zinc levels of the hepatopancreas to that observed when phytate was not present. Based on apparent digestibility values phytate phosphorus was unavailable to the shrimp and the presence of phytate depressed the bioavailability of phosphorus and zinc.  相似文献   

13.
研究了水温为(27±1)℃、盐度为10条件下,单剂量(100 mg/kg)口灌给药复方磺胺嘧啶(磺胺嘧啶SD:甲氧苄啶TMP=5:1)后,SD和TMP在拟穴青蟹(Scylla paramamosain)体内的药动学以及在肌肉、肝胰腺和鳃组织中的分布和消除规律.结果显示,拟穴青蟹口灌复方磺胺嘧啶后,血淋巴中SD和TMP药物浓度-时间关系曲线均符合一级吸收二室模型,SD和TMP的峰浓度(Cmax)分别为49.56 mg/L和2.79 mg/L,药时曲线下面积(AUC)分别为1417.6 mg/L.h和82.7 mg/L·h;肝胰腺是SD和TMP峰浓度最高的组织,其Cmax分别为59.36 mg/kg和74.82 mg/kg.由此可见,大量TMP蓄积在肝胰腺中,进入血液循环的TMP很少.在鳃组织中,SD和TMP的Cmax分别为51.89 mg/kg和42.58 mg/kg,消除半衰期分别为23.28 h和25.29 h;鳃组织中药物浓度比较高,且消除速度较快,推测其在药物代谢中承担着消除功能.在肌肉中,SD和TMP的Cmax分别为44.95 mg/kg和10.09 mg/kg,消除半衰期分别为25.09 h和35.08 h.以0.1 mg/kg和0.05 mg/kg分别为SD和TMP的最高残留限量(MRL),95%置信区间,推算SD和TMP在拟穴青蟹肌肉中的理论休药期分别为290.6 h和302.8 h,在肝胰腺中分别为340.4 h和377.0 h.  相似文献   

14.
在14±2℃水温条件下,连续5d对红鳍东方鲍口灌剂量为100mg/kg的土霉素,采用高效液相色谱法测定了停药后血清、肌肉、肝脏组织中的药物含量、消除速率常数和消除半衰期,提出了该温度下的休药期。研究表明,在停药2d后红鳍东方鲍血清和肌肉中的药物浓度达到峰值,分别为1.092μg/ml和0.806μg/g;停药3d后肝脏内土霉素浓度达到峰值1.229μg/g,土霉素在血清、肌肉和肝脏中的消除半衰期分别为23.8、22.4和26.8d;土霉素在红鳍东方纯肌肉组织中降到0.1μg/g残留限量的时间为58d,降到0.05μg/g残留限量的时间为81d。  相似文献   

15.
This study examined the pharmacokinetics and bioavailability of oxolinic acid (OA) in black tiger shrimp Penaeus monodon Fabricius, in brackish water (salinity 10 g L?1) at 28–29°C, after intra‐sinus (10 mg kg?1) and oral (50 mg kg?1) administration and also investigated the net changes of OA residues in the shrimp after cooking (boiling, baking and frying). The haemolymph concentrations of OA after intra‐sinus dosing were best described by a two‐compartment open model. The distribution and elimination half‐lives were 0.84 and 17.7 h respectively. The apparent volume of distribution at a steady state and the total body clearance were estimated to be 2061 mL kg?1 and 90.1 mL kg?1 h?1 respectively. The bioavailability of OA after an oral administration was 7.9%. The peak haemolymph concentration, the time to peak haemolymph concentration and the elimination half‐life after oral administration were 4.20 μg mL?1, 4 h and 19.8 h respectively. Oxolinic acid muscle and shell levels increased to a maximum (muscle 1.76 μg g?1 and shell 8.17 μg g?1) at 4 h post administration and then decreased with the elimination half‐life value of 20.2 and 21.9 h respectively. Residual OA in muscle and shell was reduced by 20–30% by each cooking procedure examined.  相似文献   

16.
A 63-d feeding experiment was conducted to determine the effects of dietary supplementation of probiotic bacterium Arthrobacter XE-7 on immune responses and resistance against Vibrio parahaemolyticus in the Pacific white shrimp, Litopenaeus vannamei . The probiotic bacteria were administered orally at four different doses of 0, 106, 108, and 1010 colony-forming unit (CFU)/g feed for shrimp. On Day 50, the shrimp were challenged with Vibrio parahaemolyticus by bath. On Days 7, 21, 49, and 63, six shrimp per tank were sampled to take intestine and hemolymph. With increasing dietary supplementation of probiotic bacteria, shrimp mortality decreased from 63.16% (the control) to 55.9% (106 CFU/g feed), 51.75% (108 CFU/g feed), and 51.78% (1010 CFU/g feed), respectively. Vibrio counts in intestine of shrimp fed probiotic bacterium Arthrobacter XE-7 was generally lower than that in the control shrimp ( P  < 0.05). The probiotic bacteria generally increased the immune parameters in shrimp, that is, total hemocyte counts, percentage phagocytosis, respiratory burst activity, and serum phenoloxidase activity. The results showed that probiotic bacterium Arthrobacter XE-7 can be used as probiotic in shrimp feed.  相似文献   

17.
Hybrid striped bass ( Morose saxatilis male × M. chrysops female) were injected with 25 and 50 mg oxytetracycline (OTC) per kg of fish. Rate of elimination of OTC from muscle tissue and inhibition of bacteria by muscle injected with OTC were studied. OTC residue in muscle of fish injected with 50 mg OTC/kg fish was much higher (P < 0.01) than that in fish injected with 25 mg/kg and took a longer time to clear from the muscle. In fish injected at 25 mg OTC/kg of fish, OTC was completely eliminated from muscle in 24 d; the rate of elimination constant (β) was 0.278/day and the half-life (t1/2) 2.5 d. In fish injected at 50 mg OTC/kg of fish, the OTC was not depleted in fish muscle until 32 d after injection; the rate of elimination constant 13 was 0.265/day and the half-life was 2.6 d. No statistical difference was found in muscle OTC residue between male and female fish. Size of fish (16.5 to 21.5 cm and 21.6 to 25.5 cm) made little difference in OTC residue in muscle. Muscle removed from fish injected with 25 mg/kg OTC 12 d after injection inhibited the growth of Vibrio anguillarum, V. ordalii and Aeromonas hydrophila in cultures.  相似文献   

18.
李忠帅  马甡  单洪伟  王腾  肖威 《水产学报》2021,45(11):1825-1834
为探究亚硝态氮胁迫下凡纳滨对虾[体长为(6.8±0.3) cm,体质量为(4.0±0.6) g]体内亚硝态氮的时空分布与能量代谢相关酶活性的响应,实验设置0(对照组)、0.8、4.0和8.0 mmol/L 4个处理组,进行持续96 h的亚硝态氮胁迫实验和12 h的恢复实验。结果显示,凡纳滨对虾死亡率与胁迫浓度呈现显著的正相关性。胁迫6 h内,亚硝态氮在凡纳滨对虾鳃、血淋巴、肠道、肝胰腺和肌肉组织中明显积累,且积累量与胁迫浓度呈现正相关。相同胁迫浓度组,亚硝态氮在对虾鳃中积累最多,肌肉中最少,鳃中的积累量约为肌肉的3倍。Na~+-K~+-ATP酶活性在0.8和4.0 mmol/L组对虾肝胰腺和肌肉中显著升高,而在8.0 mmol/L组的肌肉中显著降低。胁迫各组对虾肝胰腺AMPK活性显著上升,且与胁迫浓度呈现正相关性。恢复期间,除血淋巴(8.0 mmol/L组)外,各组织中亚硝态氮1 h恢复效率均超过50%,且肝胰腺和鳃的恢复效率最高,达到74%以上。血淋巴、鳃、肠道中亚硝态氮恢复到对照组水平的时间最短,均在6 h以内,而水体中亚硝态氮含量显著升高。以上研究表明,胁迫下亚硝态氮会在对虾组织中迅速积累,并引起能量代谢进程的加快;胁迫解除后,积累在体内的亚硝态氮能够迅速排出体外,以减轻毒性影响。本研究结果将为缓解亚硝态氮对养殖对虾毒性效应的研究提供参考。  相似文献   

19.
为了探讨低盐度(0.6~0.8 g/L)条件下初始体质量为(0.38±0.004)g的凡纳滨对虾(Litopenaeus vannamei)幼虾的亮氨酸需求量,以鱼粉、花生麸和L-晶体氨基酸为蛋白源配制含粗蛋白400 g/kg的6种等氮饲料,标记为L7~L12组,各组亮氨酸水平分别为15.95、17.95、19.95、21.95、23.95和25.95 g/kg(饲料干物质).每组3个重复,每个重复30尾虾,进行56 d生长实验.结果表明,凡纳滨对虾幼虾的增重率随饲料亮氨酸水平的升高而升高,当亮氨酸水平达到23.95 g/kg(L11组)时,增重率达到最高值(1143.11±36.40)%,显著高于L7组(P<0.05);亮氨酸水平继续提高,增重率变化不显著(P>0.05).幼虾的蛋白质效率、全虾体蛋白沉积率和血淋巴总蛋白随着饲料亮氨酸水平的升高呈现升高趋势,最高值出现在L11组,并显著高于L7组(P<0.05).各实验组饵料系数、血淋巴谷丙转氨酶、谷草转氨酶活性和尿素氮含量则呈现降低的趋势,最低值出现在L11组,且显著低于L7组(P<0.05).以增重率为指标,根据折线模型可知,低盐度条件下凡纳滨对虾幼虾的亮氨酸最适需要量为24.80 g/kg饲料,即61.99 g/kg饲料蛋白.  相似文献   

20.
An 8‐week feeding trial was conducted to evaluate the effects of dietary nucleotide (NT)‐rich yeast supplementation on growth, innate immunity and intestinal morphology in Pacific white shrimp (Litopenaeus vannamei). Four isonitrogenous and isolipidic practical diets were formulated to contain 0 (control), 10, 30 and 50 g/kg of NT‐rich yeast, respectively. A total of 480 shrimp with an average initial body weight of 1.86 ± 0.02 g were randomly allocated into four groups, with four replicates per group and 30 shrimp each replicate. The results indicated that shrimp fed the diet containing 50 g/kg NT‐rich yeast had significantly higher weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) than those fed the control diet, and the lowest feed conversion ratio (FCR) was observed in the shrimp fed the 50 g/kg NT‐rich yeast supplemental diet. However, there was no significant difference in survival among all treatments. The crude protein of whole shrimp in the 50 g/kg NT‐rich yeast group was higher than that in the control group. Total protein, triglyceride concentrations, the activities of aspartate aminotransferase and alanine aminotransferase in serum were significantly influenced by the dietary NT‐rich yeast supplementation. The activities of serum phenoloxidase (PO) and lysozyme (LZM) of shrimp fed the diet containing 50 g/kg NT‐rich yeast were higher than those in shrimp fed the other diets. Relative expressions of alp and lzm significantly upregulated in the 30 g/kg NT‐rich yeast group compared to the control group. The intestinal fold height and fold width in the 30 g/kg NT‐rich yeast group were significantly higher than those fed the control diet; and the highest microvillus height occurred in the shrimp fed the 50 g/kg NT‐rich yeast diet. In summary, dietary 30–50 g/kg NT‐rich yeast supplementation promotes growth performance, enhances innate immunity and improves intestinal morphology of Litopenaeus vannamei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号