首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia. Received: 19 January 2000  相似文献   

2.
Litter decomposition of Acacia auriculiformis and Acacia mangium on sandy soil under coconut trees was studied in a field trial using the litterbag technique. The study was conducted during 2001 and 2002 in Ivory Coast. Litterbags containing 450 g of dried leaves and 450 g of dried small stems were set up in two coconut plantations of different ages, 3 and 20 years old. Dry matter weight and concentrations of total nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and C/N ratio were determined at 90, 180, 270, and 360 days. The decomposition rate constant (k) and the half-life time decomposition of dry matter (T 1/2) were calculated. The study showed that A. auriculiformis and A. mangium have the same rate of decomposition on each coconut plantation. The k value varied from −1.592 day−1 to −1.492 day−1. The half-life time decomposition value of dry matter (T 1/2) ranged from 283 to 301 days. Nitrogen was released between 0 and 180 days with an N concentration for A. auriculiformis and A. mangium varying from 2.03 to 1.80% and 1.97 to 1.79%, respectively. After 180 days, the litters immobilized N. Phosphorus and Mg were released faster from A. mangium than from A. auriculiformis. A positive correlation was found between the N concentration of each Acacia species and the litter dry weight at 90 and 180 days. Likewise, C/N ratio was positively correlated with litter dry weight at 90 days.  相似文献   

3.
 Litterfall, leaf litter decomposition and N and P release were studied in four tree species (Dalbergia sissoo, Azadirachta indica, Pongamia pinnata and Shorea robusta) planted on a mine spoil habitat. Annual litterfall varied from 1220 kg ha–1 in the S. robusta stand to 3620 kg ha–1 in the A. indica stand. The fast-growing species A. indica and D. sissoo exhibited higher litter production in comparison to the other two slow-growing species. The total N returned to the soil through litterfall ranged from 8.6 kg ha–1 year–1 in the S. robusta stand to 36.5 kg ha–1 year–1 in the D. sissoo stand. The annual percent leaf litter mass loss was distinctly greater in A. indica (73%) and D. sissoo (69%) in comparison to P. pinatta (59%) and S. robusta (47%). The mean relative decomposition rates of leaf litter material were maximum in the rainy season and minimum in summer. Rainfall and its associated variables exhibited greater control over litter docomposition than temperature. Lignin and water-soluble compounds were better predictors of annual mass loss rates accounting for 90% variability. Mass loss was positively correlated with N and P mineralization rates. Lignin was the best predictor of annual N and P mineralization rates. Nutrient release pattern differed; constant release occurred in A. indica, initial release followed by delayed immobilization and release occurred in D. sissoo and P. pinnata, and initial immobilization followed by gradual release was noticed in S. robusta. A. indica and D. sissoo, showing high litterfall and rapid litter decomposition rate, hold promise for the rehabilitation of nutrient-poor coal mine spoils. On the other hand, S. robusta with less litterfall and a slow decomposition rate may prove disadvantageous. Received: 10 March 1998  相似文献   

4.
In many Japanese forests, the forest understory is largely dominated by dwarf bamboo (Sasa) species, which compete with overstory vegetation for soil nutrients. We studied the rate of leaf litterfall, and decomposition and mineralization of carbon (C) and nitrogen (N) from various components (leaf, root, wood, and rhizome) of overstory and understory vegetation in a young Betula ermanii forest from 2002 to 2004. Total litterfall was 377 g m−2 year−1, of which the overstory vegetation contributed about two thirds. A litter decomposition experiment conducted for 770 days indicated that mass loss of different litter components varied significantly, except for Sasa kurilensis wood and rhizome. Relative decomposition rates were significantly greater in the first growth period (June to October) than the dormant period (November to May) in most cases. Rainfall was the most important abiotic variable, explaining 75–80% of the variability in mass loss rates. Concentrations of ethanol soluble substances and N were significantly positively correlated (r=0.77 to 0.97, P<0.05) with mass loss at an early stage (41 days). The ratios of lignin/N and C/N were found to be negatively correlated with mass loss rates at all stages of litter decomposition. C stock loss was similar to that of mass loss, whereas N stock loss was slower, except for S. kurilensis fine root litter. The evergreen understory species S. kurilensis exhibited greater N use efficiency than B. ermanii, suggesting better competitive ability that might favor the production of a high biomass and invasion under tree species like B. ermanii.  相似文献   

5.
Litterfall, decomposition, and N release in 5-year-old and 8-year-old plantations of Casuarina equisetifolia (Forst.) in the dry tropical region of the Vindhyan plateau were studied during 1989–1990. Maximum litterfall occurred in May. The total litterfall ranged from 7.2 to 9.9t ha-1 year-1 in the 5-year-old stand and from 11.3 to 12.7t ha-1 year-1 in the 8-year-old stand over the 2-year period. Photosynthetic branchlets contributed 87–95% to the total litter. The relative decomposition rates of litter components of the ash-free mass were highest in the rainy months (4.7 to 9.9mg g-1 day-1) followed by winter (2.8 to 3.6 mg g-1 day-1) and lowest in the summer months (1.7 to 3.0 mg g-1 day-1). Similar patterns were observed for N release. The annual decay constant was highest for cone litter and lowest for photosynthetic branchlets. During decomposition, the photosynthetic branchlets showed N immobilization in November and April, the twig litter in March, and the roots in January and February. N release per unit area (g m-2) was maximum from the photosynthetic branchlets (5.3–6.3) followed by cones (4.4) > roots (3.4) > twigs (2.6–3.2). The combination of the litter C:N ratio, moisture, and temperature with the relative decomposition rate in a multiple regression analysis explained 66–84% of the variability in mass loss and 58–66% of the variability in N release.  相似文献   

6.
The decomposition and nutrient content of litter was studied for 2 years in regrowth Eucalyptus diversicolor forest to which N (0, 200 kg ha-1 year-1) and P (0, 30, 200 kg ha-1) had been applied. The P addition increased, and the N addition decreased, the rate of dry weight loss of decomposing litter. Analysis of the coefficients of a double exponential decay model with components describing the release of labile and resistant fractions indicated that decomposition of the resistant component of litter was most affected by the fertilizer additions. Treatment with N reduced the rate of loss of this component and increased its half-life by approximately 30%, whereas P treatment increased its rate of decay and decreased its half-life by approximately 30%. P accumulated in litter during decomposition. P uptake and retention was greater in P-treated than untreated plots. The application of N reduced P accumulation in litter. An accumulation of N also occurred during decomposition, the amount of N imported into litter being greater on plots treated with N fertilizer. Treatment with N affected the amount of S in decomposing litter. Litter on N-treated plots either accumulated more S or released it more slowly than litter on plots not treated with N. The application of N as NH4NO3 decreased forest-floor litter pH, increased litter layer mass (by 15%), and increased the amount of N (by 34%) and S (by 32%) stored in the forest floor. Treatment with P reduced the amount of N (by 22%) stored in the litter layer. The application of 200 kg P ha-1 in the absence of N increased the store of P in the litter layer by 80%, but when N and P were applied together the amount of P in the litter was not significantly different between P treatments.  相似文献   

7.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

8.
 The short-term (24 h) and medium-term (30 day) influence of N salts (NH4Cl, NaNO3 and NaNO2) and a non-N salt (NaCl) on first-order rate constants, k (h–1) and thresholds (CTh) for atmospheric CH4 oxidation by homogenized composites of upland boreal forest and tundra soils was assessed at salt additions ranging to 20 μmol g–1 dry weight (dw) soil. Additions of NH4Cl, NaNO3 and NaCl to 0.5 μmol g–1 dw soil did not significantly decrease k relative to watered controls in the short term. Higher concentrations significantly reduced k, with the degree of inhibition increasing with increasing dose. Similar doses of NH4Cl and NaCl gave comparable decreases in k relative to controls and both soils showed low native concentrations of NH4 +-N (≤1 μmol g–1dw soil), suggesting that the reduction in k was due primarily to a salt influence rather than competitive inhibition of CH4 oxidation by exogenous NH4 +-N or NH4 +-N released through cation exchange. The decrease in k was consistently less for NaNO3 than for NH4Cl and NaCl at similar doses, pointing to a strong inhibitory effect of the Cl counter-anion. Thresholds for CH4 oxidation were less sensitive to salt addition than k for these three salts, as significant increases in CTh relative to controls were only observed at concentrations ≥1.0 μmol g–1 dw soil. Both soils were more sensitive to NaNO2 than to other salts in the short term, showing a significant decrease in k at an addition of 0.25 μmol NaNO2 g–1 dw soil that was clearly attributable to NO2 . Soils showed no recovery from NaCl, NH4 +-N or NaNO3 addition with respect to atmospheric CH4 oxidation after 30 days. However, soils amended with NaNO2 to 1.0 μmol NaNO2 g–1 dw showed values of k that were not significantly different from controls. Recovery of CH4-oxidizing ability was due to complete oxidation of NO2 -N to NO3 -N. Analysis of soil concentrations of N salts necessary to inhibit atmospheric CH4 oxidation and regional rates of N deposition suggest that N deposition will not decrease the future sink strength of upland high-latitude soils in the atmospheric CH4 budget. Received: 30 April 1999  相似文献   

9.
 Quantitative observations on the biology of Metaphire houletti were made in cow and horse manure and oak litter in laboratory conditions over a period of 240 days. The study revealed that copulation is not a prerequisite for production of viable cocoons, indicating that M. houletti may be parthenogenetic. The mean growth rate was 2.86 mg worm–1 day–1 reaching sexual maturity at 45 days and producing 0.015 cocoons worm–1 day–1 (kept singly) and 2.82 mg worm–1 day–1, reaching sexual maturity at 45 days and producing 0.03 cocoons worm–1 day–1 (kept in batches) in cow manure; 4.08 mg worm–1 day–1, reaching sexual maturity at 46 days and producing 0.02 cocoons worm–1 day–1 (kept singly) and 2.97 mg worm–1 day–1, reaching sexual maturity at 45 days and producing 0.016 cocoons worm–1 day–1 (kept in batches) in horse manure; 3.73 mg worm–1 day–1 reaching sexual maturity at 45 day and producing 0.023 cocoons worm–1 day–1 (kept singly) and 2.73 mg worm–1 day–1, reaching sexual maturity at 47 days and producing 0.028 cocoons worm–1 day–1 (kept in batches) in oak litter. After an incubation period of 31.9±1.2 days 82% of the cocoons hatched with a mean of 1.12±0.06 hatchlings per cocoon. The earthworms reared in batches did not demonstrate any advantage over those reared singly in all substrates. Higher growth rates were observed in earthworms raised singly than those raised in batches in all substrates. Received: 30 April 1998  相似文献   

10.
Purpose

Although litter decomposition and nutrient release patterns have been studied in cocoa agroforestry systems in general, studies focusing on organic and conventional cocoa systems are lacking which is critical as organic farms are particularly dependent on nutrient returns from decomposing litter.

Materials and methods

Dynamics in leaf litter decomposition and the mineralisation of macro- and micro-nutrients in organic and conventional cocoa agroforestry systems were studied using the litterbag technique for 12 months.

Results

The average monthly mass loss was more than two times higher on organic farms (9.2–14.4 g month?1) compared to conventional farms (4.2–7.3 g month?1) in the first five months. The annual rate of decomposition (k) was higher on organic farms (1.9) compared to conventional systems (1.4). The time required for 50% (t50) and 99% (t99) decomposition of leaf litter was both lower on organic farms (t50?=?0.4 years, t99?=?2.6 years) than conventional farms (t50?=?0.5 years, t99?=?3.5 years). The estimated k values for macro- and micro-nutrients on organic cocoa systems ranged from 2.3 for calcium to 4.5 for potassium compared to 1.6 (Ca) to 2.8 (K) on conventional farms. The k values of all nutrients (except nitrogen and phosphorus) were significantly greater on organic farms than conventional systems. The estimated k values for both litter decomposition and nutrient mineralisation correlated with soil pH and moisture content, but not initial litter chemistry.

Conclusions

Organic management of smallholder cocoa agroforestry systems enhanced leaf litter decomposition and nutrient mineralisation through improved soil conditions. Thus, organic management of cocoa agroforestry systems may contribute to sustainable cocoa production in smallholder systems through enhanced nutrient return from litter decomposition.

  相似文献   

11.
 N2 fixation by leguminous crops is a relatively low-cost alternative to N fertilizer for small-holder farmers in developing countries. N2 fixation in faba bean (Vicia faba L.) as affected by P fertilization (0 and 20 kg P ha–1) and inoculation (uninoculated and inoculated) with Rhizobium leguminosarium biovar viciae (strain S-18) was studied using the 15N isotope dilution method in the southeastern Ethiopian highlands at three sites differing in soil conditions and length of growing period. Nodulation at the late flowering stage was significantly influenced by P and inoculation only at the location exhibiting the lowest soil P and pH levels. The percentage of N derived from the atmosphere ranged from 66 to 74%, 58 to 74% and 62 to 73% with a corresponding total amount of N2 fixed ranging from 169 to 210 kg N ha–1, 139 to 184 kg N ha–1 and 147 to 174 kg N ha–1 at Bekoji, Kulumsa and Asasa, respectively. The total N2 fixed was not significantly affected by P fertilizer or inoculation across all locations, and there was no interaction between the factors. However, at all three locations, N2 fixation was highly positively correlated with the dry matter production and total N yield of faba bean. Soil N balances after faba bean were positive (12–58 kg N ha–1) relative to the highly negative N balances (–9–44 kg N ha–1) following wheat (Triticum aestivum L.), highlighting the importance of rotation with faba bean in the cereal-based cropping systems of Ethiopia. Received: 13 January 2000  相似文献   

12.
Studies were conducted on denitrification in the plough layer of an irrigated sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments. The treatments were: N-100 (urea-N at 100kgha–1year–1), N-200 (urea-N at 200kgha–1year–1), FYM-16 (farmyard manure at 16 tonnes ha–1year–1), FYM-32 (farmyard manure at 32 tonnesha–1year–1) and the control (unfertilized). Averaged across sampling dates during the wheat season, the denitrification rate as measured by the C2H2-inhibition/soil-core incubation method was highest in N-200 (83gNha–1day–1), followed by FYM-32 (60gNha–1day–1, N-100 (51gNha–1day–1), FYM-16 (47gNha–1day–1) and the control (33gNha–1 day–1). During the maize growing season, average denitrification rate was highest in FYM-32 (525gNha–1day–1), followed by FYM-16 (408gNha–1day–1), N-200 (372gNha–1day–1, N-100 (262gNha–1day–1) and the control (203gNha–1day–1). Denitrification loss integrated over the whole vegetation period was at a maximum under FYM-32 (13.9kgNha–1), followed by N-200 (11.8kgNha–1), FYM-16 (10.6kgNha–1) and N-100 (8.0kgNha–1), whereas the minimum was observed for the control (5.8kgNha–1). Under both crops, denitrification was significantly correlated with water-filled pore space and soil NO3 -N. The best multiple regression models accounted for 52% and 70% of the variability in denitrification under wheat and maize, respectively. Results indicated that denitrification is not an important N loss mechanism in this well-drained, irrigated sandy-clay loam under a wheat-maize cropping system receiving fertilizer inputs in the range of 100–200kgNha–1year–1. Received: 14 January 1997  相似文献   

13.
Emission of N2O from rye grass (Lolium perenne L.)   总被引:6,自引:0,他引:6  
 The possibility of an additional N2O emission pathway via plants was investigated in a soil-rye-grass (Lolium perenne L.) system. The N2O emission rate of the system varied between 0.8 and 13.3 mg N2O-N m–2 day–1. Comparing the N2O emission rate of the system before and immediately after cutting the rye grass allowed us to calculate the contribution of the rye grass to the N2O emission from the soil-plant system. It was found that, depending on the type of fertilization and the growing period of the plants, the N2O released from the rye grass varied between 0 and 2.8 mg N2O-N m–2 day–1. N 2 O emission mediated by the rye grass increased towards the end of the growing period. An exponential correlation [R2=0.93, y=(8×10–6x 2 )–(2×10–5x)+0.21] was observed between the N2O emission (y) from the rye grass and its NO3 –N content (x). However, it was not clear whether N2O was produced by the plants themselves or whether the rye grass served as a conduit for N2O produced in the soil. Received: 18 March 1998  相似文献   

14.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

15.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle.  相似文献   

16.
Nutrient concentrations in the soil and crop uptake from incorporated green manure and urea in flooded rice was studied in field experiments. Release of plant-available nitrogen (NH4 +-N) from green manure was slightly delayed compared with that from prilled urea (PU) because Sesbania rostrata L. and Aeschynomene afraspera L. released the N gradually after their decomposition, whereas N became available immediately after PU application. Exchangeable NH4 +-N concentration in soil peaked at 163 mg kg–1 in the transplanted rice (TPR) and 198 mg kg—1 in broadcast-seeded rice (BSR) at 0 and 1 week after PU application. Broadcast-seeded rice depleted NH4 +-N faster than did TPR because of the crop‘s vigorous growth in the former during the early stage. Soil solution NH4 +-N followed a similar trend to that of soil NH4 +-N. Incorporation of S. rostrata and A. afraspera increased the concentration of P, K+, Fe2+ and Mn2+ in soil solution more than did the application of PU. However, zinc concentration decreased in all treatments. Both PU and green manure increased the N status of the rice plants and enhanced the uptake of P, K, Fe, Mn and Zn by the rice crop. This suggests that application of green manures improves the uptake of these nutrients by the crop. The highest apparent N recovery was obtained with PU followed by green manure. Received: 11 November 1996  相似文献   

17.
In a field study in an upper mountain rain forest in Sri Lanka leaf litter decay rates for nine tree species were measured using the standard litterbag method. The leaf species showed a wide variation in decomposition rates with k values ranging from 0.19 to 9.6 (t0.99 values ranging from 0.5 to 24 years), but it was possible to recognize fast, medium and slow decomposition groups. While there were considerable differences in physical and chemical litter properties these were poor predictors of decomposition rates. There was considerable variation in the N, P and lignin contents of mature green leaves and freshly fallen dead leaves of the different tree species. Percent resorption of N varied from 0 (one species) to 56 and of P from 0 (three species) to 73. There were no consistent patterns of nutrient mobilization and net release of N and P in the five leaf litter species studied.  相似文献   

18.
 The effects of inorganic N and organic manure, applied to a loamy arable soil, on CH4 oxidation were investigated in laboratory incubation experiments. Applications (40 mg N kg–1) of NH4Cl, (NH4)2SO4, and urea caused strong instantaneous inhibition of CH4 oxidation by 96%, 80%, and 84%, respectively. After nitrification of the added N the inhibitory effect was not fully reversible, resulting in an residual inhibition of 21%, 16%, and 25% in the NH4Cl, (NH4)2SO4, and urea treatments, respectively. With large NH4 + applications [240 mg N kg–1 as (NH4)2SO4] the residual inhibition was as high as 64%. Exogenous NO2 (40 mg NO2 -N kg–1) initially inhibited CH4 oxidation by 84%, decreasing to 41% after its oxidation. Therefore, applied NO2 was a more effective inhibitor of CH4 consumption than NH4 +. Temporary accumulation of NO2 during nitrification of added N was small (maximum: 1.9 mg NO2 -N kg–1) and thus of minor importance with respect to the persistent inhibition after NH4 + or urea application. CH4 oxidation after NaNO3 (40 mg N kg–1) and NaCl addition did not differ to that of the untreated soil. The effect of organic manures on CH4 oxidation depended on their C/N ratio: fresh sugar beet leaves enhanced mineralization, which caused an instantaneous 20% inhibition, whereas after wheat straw application available soil N was rapidly immobilized and no effect on CH4 oxidation was found. The 28% increase in CH4 oxidation after biowaste compost application was not related to its C/N ratio and was probably the result of an inoculation with methanotrophic bacteria. Only with high NH4 + application rates (240 mg N kg–1) could the persistent inhibitory effect partly be attributed to a pH decrease during nitrification. The exact reason for the observed persistent inhibition after a single, moderate NH4 + or urea application is still unknown and merits further study. Received: 31 October 1997  相似文献   

19.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

20.
Summary Azolla spp. and Sesbania spp. can be used as green manure crops for wetland rice. A long-term experiment was started in 1985 to determine the effects of organic and urea fertilizers on wetland rice yields and soil fertility. Results of 10 rice croppings are reported. Azolla sp. was grown for 1 month and then incorporated before transplanting the rice and 3–4 weeks after transplanting the rice. Sesbania rostrata was grown for 7–9 weeks and incorporated only before transplanting the rice. Sesbania sp. grew more poorly before dry season rice than before wet season rice. Aeschynomene afraspera, which was used in one dry season rice trial, produced a larger biomass than the Sesbania sp. The quantity of N produced by the Azolla sp. ranged from 70 to 110 kg N ha-1. The Sesbania sp. produced 55–90 kg N ha-1 in 46–62 days. Rice grain yield increases in response to the green manure were 1.8–3.9 t ha-1, similar to or higher than that obtained in response to the application of 60 kg N ha-1 as urea. Grain production per unit weight of absorbed N was lower in the green manure treatments than in the urea treatment. Without N fertilizer, N uptake by rice decreased as the number of rice crops increased. For similar N recoveries, Sesbania sp. required a lower N concentration than the Azolla sp. did. Continuous application of the green manure increased the organic N content in soil on a dry weight basis, but not on a area basis, because the application of green manure decreased soil bulk density. Residual effects in the grain yield and N uptake of rice after nine rice crops were found with a continuous application of green manure but not urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号