首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A participatory on-farm study analysed water and nutrient budgets of six low and four high water-exchange ponds of integrated agriculture–aquaculture (IAA) farms in the Mekong delta. Water, nitrogen (N), organic carbon (OC) and phosphorus (P) flows through the ponds were monitored, and data on fish production and nutrient accumulation in sediments were collected during a fish culture cycle. Results showed that, on average, only 5–6% of total N, OC or P inputs introduced into ponds were recovered in the harvested fish. About 29% N, 81% OC and 51% P accumulated in the sediments. The remaining fractions were lost through pond water discharges into adjacent canals. Fish yields and nutrient accumulation rates in the sediments increased with increasing food inputs applied to the pond at the cost of increased nutrient discharges. High water-exchange ponds received two to three times more on-farm nutrients (N, OC and P) while requiring nine times more water and discharging 10–14 times more nutrients than the low water-exchange ponds. Water and nutrient flows between the pond and the other IAA-farm components need to be considered when optimizing productivity and profitability from IAA systems.  相似文献   

2.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

3.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

4.
Chemical Budgets for Polyethylene-lined, Brackishwater Ponds   总被引:1,自引:0,他引:1  
Budgets for water, nitrogen, phosphorus, chemical oxygen demand (COD), and dissolved oxygen (DO) were estimated from May to October 1986 in three 0.09 ha ponds stocked with striped bass Morone saxatilis (Walbaum). Ponds were lined with highdensity polyethylene sheeting to prevent seepage. Pond bottoms, except for side slopes, were covered with soil. Total rainfall roughly equalled evaporation. Liner runoff augmented rainfall inflow by 43%. The largest source of nitrogen input was feed -88% of the measured input. Overflow was the greatest measured loss of nitrogen. Denitrification and ammonia volatilization apparently removed large amounts of nitrogen. Feed applications and runoff were the major phosphorus inputs. Fish harvest and uptake by mud represented the major losses of phosphorus. The production of each kilogram of fish required 2.09kg of feed and released to the water, as metabolic waste, 118.55g nitrogen, 1.2g phosphorus, and 1.67kg COD. Metabolic wastes from fish resulted in the production of an additional 3.71kg of COD in phytoplankton and benthic algae. Thus, 1kg of live striped bass resulted in a total of 5.38kg of COD. Benthic respiration exceeded respiration of microorganisms in the water column. Total respiration exceeded oxygen produced by photosynthesis, but diffusion of oxygen from the atmosphere into the ponds was sufficient to maintain adequate DO concentrations for fish survival.  相似文献   

5.
A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit orchards, livestock and rice fields were monitored in the Mekong delta of Vietnam. Pond mass balances for nitrogen (N), organic carbon (OC) and phosphorus (P) were determined, and pond water quality and sediment nutrient accumulation were monitored. Data were analyzed using multivariate canonical correlation analysis, cluster analysis and discriminant analysis. The main variability in pond water quality and sediment nutrients was related with food inputs and water exchange rates. Water exchange rate, agro-ecological factors, pond physical properties and human waste input were major variables used to classify ponds. Classification was into: (1) low water exchange rate ponds in the fruit-dominated area, (2) low water exchange rate ponds in the rice-dominated area receiving homemade feed, and (3) high water exchange rate ponds in the rice-dominated areas receiving wastes. Pond water exchange rate was human-controlled and a function of food input patterns, which were determined by livelihood strategies of IAA-households. In the rice-dominated area with deep ponds, higher livestock and human wastes were found together with high water exchange rates. In these ponds, large organic matter loads reduced dissolved oxygen and increased total phosphorus concentrations in the water and increased nutrient (N, OC and P) accumulation in the sediments. In the rice-dominated area with wide ponds, higher homemade feed amounts were added to the ponds with low water exchange rate. This resulted in high phytoplankton biomass and high primary productivity. The contrary occurred in the fruit-dominated area, where fish were grown in shallow and narrow ponds, receiving more plant residue which resulted in lower phytoplankton biomass and lower sediment nutrient accumulation.  相似文献   

6.
The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4‐N was removed efficiently in the plant trenches, particularly in the trenches with Canna glauca L., probably because of plant uptake and nitrification–denitrification. Plant uptake constituted 6% of N and 7% of P in the input feed. Approximately 1.0 m3 of water was needed per kg of fish produced, and 370, 97 and 2842 g fresh aboveground biomass of Ipomoea aquatica Forssk., Lactuca sativa L. and C. glauca, respectively, were produced. The leafy vegetables provide some extra income besides fish products, whereas C. glauca provides nice flowers and contributes to a significant nutrient removal with annual uptake rates of 725 kg N and 234 kg P ha?1 year?1. This research demonstrates that integrated recirculating aquaculture‐hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds.  相似文献   

7.
This study was conducted to help provide a framework for Australian regulation of shrimp farm siting and discharges. Monitoring of farm water usage, and intake and discharge water quality was conducted at three commercial intensive shrimp farms, chosen to represent different operating environments, latitudes, cultured species and management styles. Weekly samples were taken over 3 years, for 3–12 months at each farm, to investigate intake and discharge concentrations and loads of total suspended solids (TSS), total nitrogen (TN) and total phosphorus (TP). Mean water exchange was 1.4 ML ha?1 day?1 (about 10% day?1) at the first farm studied and 0.5 ML ha?1 day?1 (about 3.6% day?1) at the others. Farm mean discharge concentration varied as follows: TSS, from 36.9 to 119 mg L?1; TN, from 2.1 to 3.1 mg L?1 and TP, from 0.22 to 0.28 mg L?1. Farm mean intake concentrations were from 11% to 91% of equivalent mean discharge concentration (for TN at Farm B and TSS at Farm C respectively). Mean net discharge loads, related to area of production ponds at each farm, varied as follows: TSS, from 4.8 to 85.7 kg ha?1 day?1; TN, from 1 to 1.8 kg ha?1 day?1 and TP, from 0.11 to 0.22 kg ha?1 day?1. The highest net loads of TSS, TN and TP were all from the farm with the highest water exchange rate, located on a coastal river, and studied during a year of high rainfall with associated poor water quality. These results can be used to help predict likely discharge characteristics for new shrimp farms, and provide a benchmark against which to evaluate future improvements in shrimp farm environmental management.  相似文献   

8.
通过调查走访和实验分析,比较了3种投饵结构下河蟹(Eriocheir sinesis)养殖池塘在氮、磷收支和实际污染强度方面的差异。1种饵料结构以冰鲜鱼为主,另2种含配合饲料,按照配合饲料使用量不同,分为低于1000kg/hm2组和高于1000kg/hm2组。结果显示,以冰鲜鱼为主的养殖池塘氮收支方程为:苗种3.02kg(1.10%)+饵料272.18kg(98.90%)=渔获物31.92kg(11.60%)+伊乐藻136.18kg(49.48%)+底泥沉积79.53kg(28.90%)+尾水排放27.57kg(10.02%),磷收支方程为:苗种0.26kg(0.42%)+饵料61.02kg(99.58%)=渔获物1.49kg(2.43%)+伊乐藻15.01kg(24.49%)+底泥沉积41.94kg(68.44%)+尾水排放2.84kg(4.63%);配合饲料使用量低于1000kg/hm2的养殖池塘氮收支方程为:苗种4.49kg(2.74%)+饵料159.09kg(97.26%)=渔获物45.55kg(27.85%)+伊乐藻136.18kg(83.25%)+底泥沉积-39.26kg(-24.00%)+尾水排...  相似文献   

9.
Aquaculture of catfish, Pangasianodon hypophthalmus (Sauvage), locally known as “ca tra”, and commonly referred to as striped catfish, river catfish and sutchi catfish, in Vietnam, having recorded a production of 683,000 tonnes in 2007, valued at about 645 million US$ is one of the largest single species based farming system, restricted to a small geographical area, in the world. The product is almost totally exported to over 100 countries as frozen fillets, as an acceptable alternative to white fish. Catfish is farmed mostly in earthen ponds, up to 4 m deep, in nine provinces in the Mekong Delta in South Vietnam. The results of the grow-out system of catfish farming in the Mekong Delta from a survey of 89 farms are presented. The farm size ranged from 0.2 to 30 ha with a mean of 4.09 ha. The frequency distribution of the yield in tonne/ha/crop and tonne/ML/crop corresponded to a normal distribution curve, where 75% of the farms yielded 300 tonnes/ha/crop or more. It was found that the yield per crop was significantly correlated (p < 0.05) to stocking density, pond depth and volume but not to pond surface area. Yields per crop was significantly different (p < 0.05) between upper and lower provinces of the Mekong Delta and water source (river versus channels), amongst others. It was evident that diseases and/or symptoms were observed to occur mostly in accordance with the onset of rains. In this paper the history of the catfish farming in the Mekong Delta is briefly traced, and current harvesting and marketing procedures as well as pertinent social elements of the farming community are dealt with.  相似文献   

10.
Two commercial shrimp farms in south Texas were evaluated for influent and effluent water quality from June to October 1994. The intensive farm, Taiwan Shrimp Village Association (TSV) had an average annual yield of 4630 kg ha?1 while the semi‐intensive farm, Harlingen Shrimp Farm (HSF), had a yield of 1777 kg ha?1. The study had three objectives: (1) to compare influent and effluent water from the intensive and semi‐intensive shrimp farms, (2) to show which effluent water‐quality indicators exceeded allowable limits, (3) to indicate inherent problems in farms operated with water exchange and summarize how findings from this study led to changes in farms' management that limited potential negative impact on receiving streams. Water samples were collected and analysed twice a week for the TSV farm and once a week for the HSF farm. Samples were analysed for dissolved oxygen (DO), salinity, pH, ammonia‐nitrogen (NH3‐N), nitrite‐nitrogen (NO2‐N), nitrate‐nitrogen (NO3‐N), total phosphorus (TP), total reactive phosphorus (TRP), five‐day carbonaceous biochemical oxygen demand (cBOD5), total suspended solids (TSS) and settleable solids (SettSols). Most of the effluent constituents showed fluctuations throughout the sampling period often related to harvest activity. Effluent pH at TSV was lower than influent values but within the regulatory requirements set by Texas Commission of Environmental Quality (TCEQ), formerly known as Texas Natural Resource Conservation Commission (TNRCC). HSF effluent pH values were higher than its influent, but still within TCEQ limits. Effluent DO mean levels were generally below the regulatory daily mean requirement, with values at TSV often below those for influent. Effluent nutrient concentrations and net loads were generally higher at the intensive shrimp farm, with NH3‐N mean concentrations above the daily mean set by the TCEQ on several occasions. Effluent TSS concentrations were higher than influent for both farms, with daily mean values above the TCEQ limit. The two farms presented similar TSS concentrations despite their different stocking densities. However, TSS total net load and net load per hectare were higher at the intensive farm. The semi‐intensive farm presented higher cBOD5 concentrations and net loads despite its lower stocking density, with daily mean values above the TCEQ limit. The cBOD5 net load at TSV presented negative values indicating higher load at the influent than at the effluent. Analyses showed no evidence of self‐pollution between influent and effluent at the two farms. The high feed conversion ratio (FCR) values (2.3 and 2.7 for the intensive and the semi‐intensive farm respectively) suggest that better feed management is needed to reduce nutrient and solid net loads release from the two farms. The data obtained from this study resulted in several modifications in design and management of the two farms that reduced the potential negative impact on receiving streams. A brief summary of the improvement in selected effluent water‐quality indicators at the intensive shrimp farm is provided.  相似文献   

11.
Commercial intensive aquaculture systems werebuilt and are managed in a somewhat differentway in each farm. To evaluate the effects ofseveral management procedures on water qualityin intensive fish ponds, data from severallocations, times and culture conditions indifferent farms were collected and are hereinanalyzed through multivariate statistics.Water quality in the intensive ponds depends onthe water entering, the biological processeswithin, and the water leaving the ponds. Areservoir used as source and sink water supplied theintensive ponds with higher organic loadingthan clear source waters, and its phytoplanktoncontent affected nitrogen cycling within theintensive ponds. The systems with a reservoirhad better water quality in the intensive pondsthan those with only clean source water.Within the ponds (1) compared to paddle-wheelaeration, aeration by pure oxygen increasedoxygen concentration, improved nitrificationand promoted decomposition that reduced organicloading. (2) In concrete ponds accumulation oforganic matter and development of anerobicconditions on the pond bottom was higher thanin the slippery plastic-covered ponds. (3) Allintensive ponds provided good growthconditions, tilapia biomass having relativelysmall influence on water quality. Only inpaddle-wheel aerated ponds did increased tilapiabiomass increased inorganic nitrogen compoundsand soluble phosphorus through excretion, andreduce organic nitrogen through a moreefficient removal of food particles.Water leaving the ponds removes matteraffecting water quality within the pond. (1)Draining sediments accumulated on the bottomavoided development of anaerobic conditionswhere denitrification and phosphorus liberationcan occur. (2) Water exchange removed particleswith nitrifying bacteria and algae that absorbnutrients. A high water exchange rate may havea negative effect from the water quality pointof view and from the extra costs incurred inenergy and feeds washed out.The processes described occur simultaneouslythroughout the culture period and shape waterquality dynamics in the ponds. This researchcontributed to the understanding of howmanagement procedures affect the differentphases of water quality dynamics in real-scaletilapia commercial intensive systems.  相似文献   

12.
Artemia culture in the Mekong Delta, Vietnam, is becoming more and more important to satisfy the global demands of cyst production. Nevertheless, Artemia cyst productivity in the Mekong Delta has been fluctuating largely due to not only technical inefficiencies and external factors but also farms’ characteristics. This study employed a data envelopment analysis to evaluate the production efficiencies in correlation with biological and cost inputs of Artemia culture in Vinh Chau and Bac Lieu located in the Mekong Delta. The key factors affecting technical efficiency (TE) were determined using ordinary least squares regression model. The empirical results indicated that production efficiencies of farms in Vinh Chau and Bac Lieu were similar with metatechnology ratios of 0.97 and 0.96 respectively. About 62.8% of surveyed farms were operating in technically inefficient circumstances. Farmers’ experience, educational level and culture technique training participation had positive effects on TE, while climate effects and water problems have been proved to have negative effects on TE. To improve production efficiency, inefficient farms are suggested to have moderately increasing combinations of organic fertilizer, chemical and feed. The use of probiotics should be reduced as it increases production cost and affects TE. Notably, a collaboration of scientists and feed processing companies is recommended to produce a specific formulated feed for Artemia in commercial scales. This study also proposes adaptive policies for local governments and cooperatives to assist coastal famers in the Mekong Delta overcome technical inefficiencies, improve cyst productivity and obtain economic sustainability in Artemia culture.  相似文献   

13.
Aquaculture operations produce high volumes of wastewater containing suspended solids and nutrients such as phosphorus and nitrogen. Treatment of water effluent from fish production ponds is essential for sustain environment. So, the present study was conducted to evaluate simultaneous use of microalgae and iron oxide nanoparticles (NPs) to purify aquaculture effluents within a designed bioreactor. For designing experiment, effluent samples were collected from fish farms in Sari, Iran. Iron oxide nanoparticles were prepared from Iranian Nano Pishgaman Company. Chlorella vulgaris was captured from the environment, then purified and cultured in the laboratory. After that, NP and microalgae were transferred to the reactor space. TSS (total suspended solid), TDS (total dissolved solid), BOD (biological oxygen demand), pH (power of hydrogen), EC (electrical conductivity), NO3 (nitrates), NO2 (nitrite), NH4, (ammonium) and PO4 (phosphates) were measured during the experiment period which NH4 (93.67 %), NO3 (92.23 %), NO2 (89.3 %), and PO4 (89.25 %) showed the highest reduction percentage, respectively. Also, significant differences among the calculated parameters (except for pH) were observed during the experiment (P < 0.05). Based on the obtained results, it is concluded that the simultaneous use of microalgae and nanoparticles is desirable for purification of aquaculture wastewaters.  相似文献   

14.
A simulation was carried out by using a 3D numerical model for estimate the nutrient level discharged from striped catfish, Pangasianodon hypophthalmus intensively farming in the Mekong River, Vietnam. The simulated period was dry season from April 24, 2007, to April 27, 2007. Both dissolved and particulate forms of nutrients were simulated. A real status of water environment and scenario of discharge after applying fishpond effluent for irrigation of rice field were estimated in My Hoa Hung fish farm, An Giang Province. Simulated results were verified by observed data. Our results showed that nutrient levels at farming area in dry season were temporarily high and local. Applying waste water from the fishpond for irrigation of rice field could greatly reduce nutrients level in the fish farming area, the nutrient levels were 77 % for total nitrogen and 73 % for phosphorus. Therefore, recycling nutrient from fishpond effluent for irrigation of rice field illustrated an effective technology for pollution reduction which is a crucial issue to enable sustainable development of intensively farmed striped catfish.  相似文献   

15.
Commercial intensive aquaculture systems werebuilt and are managed in a somewhat differentway in each farm. To evaluate the effects ofseveral management procedures on water qualityin intensive fish ponds, data from severallocations, times and culture conditions indifferent farms were collected and are hereinanalyzed through multivariate statistics. Water quality in the intensive ponds depends onthe water entering, the biological processeswithin, and the water leaving the ponds. Areservoir used as source and sink water supplied theintensive ponds with higher organic loadingthan clear source waters, and its phytoplanktoncontent affected nitrogen cycling within theintensive ponds. The systems with a reservoirhad better water quality in the intensive pondsthan those with only clean source water. Within the ponds (1) compared to paddle-wheelaeration, aeration by pure oxygen increasedoxygen concentration, improved nitrificationand promoted decomposition that reduced organicloading. (2) In concrete ponds accumulation oforganic matter and development of anerobicconditions on the pond bottom was higher thanin the slippery plastic-covered ponds. (3) Allintensive ponds provided good growthconditions, tilapia biomass having relativelysmall influence on water quality. Only inpaddle-wheel aerated ponds did increased tilapiabiomass increased inorganic nitrogen compoundsand soluble phosphorus through excretion, andreduce organic nitrogen through a moreefficient removal of food particles. Water leaving the ponds removes matteraffecting water quality within the pond. (1)Draining sediments accumulated on the bottomavoided development of anaerobic conditionswhere denitrification and phosphorus liberationcan occur. (2) Water exchange removed particleswith nitrifying bacteria and algae that absorbnutrients. A high water exchange rate may havea negative effect from the water quality pointof view and from the extra costs incurred inenergy and feeds washed out. The processes described occur simultaneouslythroughout the culture period and shape waterquality dynamics in the ponds. This researchcontributed to the understanding of howmanagement procedures affect the differentphases of water quality dynamics in real-scaletilapia commercial intensive systems.  相似文献   

16.
珠三角地区密养淡水鱼塘水质状况分析与评价   总被引:4,自引:0,他引:4  
池塘养殖是珠三角地区淡水渔业生产的主要形式。2012年5月~12月对草鱼(Ctenopharyngodon idellus)、云斑尖塘鳢(Oxyeleotris marmoratus)、大口黑鲈(Micropterus salmoides)和乌鳢(Channa argus)等该地区几种主要密养淡水品种鱼塘水质进行监测,分析水体理化环境因子,并选取pH、溶解氧(DO)、非离子氨(NH3)、氨氮(NH4^+-N)、硝酸盐氮(NO3^--N)、亚硝酸盐氮(NO2^--N)、总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)和透明度等10项因子,采用单项污染指数和负荷比对监测参数进行单项评价,用综合污染指数法对各池塘水质进行整体评价。结果表明4种密养淡水鱼塘营养盐负荷高问题突出,NH3、NO3^--N、NO2^--N、TN和TP为池塘中的主要污染因素;草鱼池塘主要污染物为NH3和TN,其污染负荷合计为37.58%;云斑尖塘鳢池塘主要污染物为NH3、NO3^--N和TN,其污染负荷达59.37%;大口黑鲈池塘的主要污染物为NH3、TN、NO3^--N和NO2^--N,其污染负荷高达66.80%;乌鳢池塘的主要污染物为TN、NO3^--N、TP和NH3,其污染负荷达59.43%;对CODMn的分析与评价结果显示,池塘水体中还原性有机质含量高;由综合污染指数判定,所有池塘水体均为"重污染"等级,并超出警戒水平。  相似文献   

17.
Ten water quality parameters were measured in influent and effluent water at 11 aquaculture facilities in Hawaii. The data were grouped into four categories based on the types of organisms cultured: freshwater fish, freshwater prawn, marine fish, and marine shrimp. Within each category, concentrations of most parameters were lognormally distributed and spanned one to two orders of magnitude. Geometric mean concentrations of suspended materials, total nitrogen, total phosphorus, and pigments were highest in effluent from freshwater prawn ponds and lowest in marine fish pond effluent. Nitrate/Nitrite and total ammonia concentrations were higher in fish pond effluent than in crustacean pond effluent. Parameter concentrations were generally higher in effluent than in influent water, with freshwater fish and prawn ponds exhibiting the greatest increases in suspended materials and pigments. In contrast, nitrate/nitrite concentrations were lower in effluent than in influent waters. These data provide a basis for analyzing the environmental impacts of warm-water aquaculture effluent discharges.  相似文献   

18.
An environmental assessment was made of Alabama channel catfish Ictalurus punctatus farming which is concentrated in the west‐central region of the state. There are about 10,000 ha of production ponds with 10.7% of the area for fry and fingerlings and 89.3% for food fish. Food fish production was about 40,800 tons in 1997. Watershed ponds filled by rainfall and runoff make up 76% of total pond area. Water levels in many of these ponds are maintained in dry weather with well water. The other ponds are embankment ponds supplied by well water. Harvest is primarily by seine‐through procedures and ponds are not drained frequently. The main points related to Alabama catfish farming and environment issues are as follows: 1) catfish farming in Alabama is conservative of water, and excluding storm overflow, about two pond volumes are intentionally discharged from each pond in 15 yr; 2) overflow from ponds following rains occurs mostly in winter and early spring when pond water quality is good and stream discharge volume is high; 3) total suspended solids concentrations in pond effluents were high, and the main sources of total suspended solids were erosion of embankments, pond bottoms, and discharge ditches; 4) concentrations of nitrogen and phosphorus in effluents were not high, but annual effluent loads of these two nutrients were greater than for typical row crops in Alabama; 5) ground water use by the industry is about 86,000 m3/d, but seepage from ponds returns water to aquifers; 6) there is little use of medicated feeds; 7) copper sulfate is used to control blue‐green algae and off‐flavor in ponds, but copper is rapidly lost from pond water; 8) although sodium chloride is applied to ponds to control nitrite toxicity, stream or ground water salinization has not resulted from this practice; 9) fertilizers are applied two or three times annually to fry and fingerling ponds and occasionally to grow‐out ponds; 10) hydrated lime is applied occasionally at 50 to 100 kg/ha but this does not cause high pH in pond waters or effluents; 11) accumulated sediment removed from pond bottoms is used to repair embankments and not discarded outside ponds; 12) sampling above and below catfish pond outfalls on eight streams revealed few differences in stream water quality; 13) electricity used for pumping water and mechanical aeration is only 0.90 kW h/kg of production; 14) each metric ton of fish meal used in feeds yields about 10 tons of dressed catfish. Reduction in effluent volume through water reuse and effluent treatment in settling basins or wetlands does not appear feasible on most farms. However, some management practices are recommended for reducing the volume and improving the quality of channel catfish pond effluents.  相似文献   

19.
Application of readily-oxidizable organic substrate to laboratory soil-water systems and fish ponds caused anaerobic conditions in bottom soil and water, and concentrations of soluble reactive phosphorus (SRP) increased. Aeration of ponds increased total phosphorus (TP) concentrations by suspending soil particles in the water, but SRP concentrations declined because of increased oxy- genation of bottom water and soil, Alum [Al2(SO4)3·14H2O] treatment of ponds reduced SRP and TP concentrations in ponds, but the low concentration of alum used, 20 mg/L, had little residual effect on phosphorus concentration. Application of agricultural limestone at 0.2 kg/m2 to ponds with soil pH of 5.5 and Ca2+ concentration of 5 mg/L did not affect SRP and TP concentration. Unless pond soils were anaerobic at their surfaces, a condition not acceptable in thermally-unstratified fish ponds, soils released little phosphorus to the water. Strong adsorption of phosphorus by soils in intensive ponds with feeding is beneficial, because removal of phosphorus by aerobic soils is a control on excessive phytoplankton growth. In fertilized ponds, phosphorus must be applied at frequent intervals to replace phosphorus removed from the water by soils.  相似文献   

20.
Annual sex hormonal profiles, gonad development and age determination of 18 (13–14 kg body weight) and three (145–226 kg body weight) Mekong giant catfish (MGC) (Pangasianodon gigas, Chevey) reared in earthen ponds in Chiang Mai and from the Mekong River in Chiang Rai, Thailand, respectively, were investigated. The hormonal profiles were determined from blood samples of the fish by electrochemiluminescence immunoassay during May to August in 2000. The highest testosterone levels of 0.06 ng mL?1 in both sexes and the highest oestradiol of 47.8 and 14.23 pg mL?1 in females and males, respectively, were observed in May. The gonadosomatic index was found to be 0.07 for males and 0.38 for females from ponds in comparison with 2.27 for males and 8.29 for females from the Mekong River. Higher development stages of spermatocytes and oocytes of the cultured fish in May than in February and November were demonstrated. No mature germ cells were obtained from either the males or females, indicating no sexual maturity. The average age of fish was determined from the annual rings of the cross‐section of the pectoral fins by a stereomicroscope. The average age of fish in earthen pond determined from the annual ring was 8 years, which agreed with the actual culture records, while those from the Mekong River were 21 years. This information will be beneficial for the breeding programmes and conservation of the MGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号