首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was conducted under laboratory conditions to analyse the mechanisms of prey capture by tadpoles, Bufo regularis Reuss, and to determine the minimum size at which the predation pressure by tadpoles on the larvae of African catfish, Heterobranchus longifilis Val., becomes insignificant. It was observed that the tadpoles fed on the larvae by suction without any specific capture strategies regardless of their sizes. The predation pressure was very high (100% mortality) during yolk-sac absorption and reduced gradually as the larvae increased in size. Based on these results, it was suggested to transfer the fry into nursing ponds only when they have reached a size greater than 10 mm TL (5–7 days) so as to avoid their predation during the primary nursing phase.  相似文献   

2.
Black catfish (Rhamdia quelen) is a species of interest for aquaculture in Brazil, Argentina and Uruguay. A feeding trial was conducted to evaluate the effect of feeding R. quelen larvae on either only an artificial diet or in combination with Artemia nauplii (AN) on larval performance and fatty acid composition. For 12 days, larvae were fed from first feeding (3 days after hatching, TL = 5.88 ± 0.23 mm) with artificial food only or a combination of artificial food and AN (co‐feeding). At the end of the trial, total length of co‐fed larvae was significantly higher than that of larvae fed solely artificial food (P < 0.001). No significant differences were found in survival rates. Co‐feeding microdiet with a small amount of AN significantly affected larval fatty acid composition. Lipid and fatty acid composition of food and larvae revealed the importance of n‐3 fatty acids for growth of black catfish larvae and that, as most freshwater fish, R. quelen larvae can elongate and desaturate linolenic acid to n‐3 highly unsaturated fatty acids. Results suggest that R. quelen larvae can be fed from first feeding on microdiets as unique food source, although better larval performances are obtained by co‐feeding with a small amount of AN.  相似文献   

3.
Fingerling HS‐5 channel catfish, Ictalurus punctatus, NWAC 103 channel catfish, D&B blue catfish, Ictalurus furcatus, HS‐5 female channel × D&B male blue catfish F1 hybrids, and NWAC 103 female channel × D&B male blue catfish F1 hybrids were stocked into twenty‐five 0.04‐ha earthen ponds at 12,500 fish/ha and grown for 277 d. Fish were fed daily at rates from 1.0 to 3.0% biomass based on feeding activity and temperature and adjusted weekly assuming a feed conversion ratio (FCR) of 1.8 and 100% survival. At harvest, 40 fish from each pond were sampled, and all other counted and weighed. Mean survival, growth rate indexes (a), FCR, and skin‐on fillet percentages were not significantly different. Mean harvest weights and net production were higher for HS‐5 channel and its hybrid than for the NWAC 103 channel, NWAC 103 hybrid, and D&B blue catfish, partially because of their larger mean stocking weights. D&B blue catfish was more uniform in size than NWAC 103 channel and NWAC 103 hybrid. D&B blue catfish was the easiest to seine. HS‐5 hybrids and NWAC 103 hybrids had lower mean head percentage and a better processing yield than their parent channel catfish.  相似文献   

4.
The double‐crested cormorant, Phalacrocorax auritus, is considered the primary depredating bird species on commercially produced channel catfish, Ictalurus punctatus, in the southeastern USA. We simulated different levels of cormorant predation on losses at harvest and economic effects on channel catfish production in a multiple‐batch cropping system. We observed significant (P < 0.05) declines in catfish production at increasing levels of cormorant predation in this study. This decline was mitigated by increased individual growth of catfish at higher predation rates (i.e., lower catfish densities). This mitigating effect produced a non‐linear relationship with total kg of catfish harvested per pond resulting in a non‐linear incremental increase in breakeven price related to predation. Costs of production ($/kg) increased with increasing predation levels up to very high levels of predation with a cumulative maximum increase in breakeven price of $0.143/kg. These results indicate that losses at harvest due to cormorant predation occur immediately but are mitigated in part by compensatory growth of individual catfish. Losses due to cormorant predation in multi‐batch systems can be considerable, but there is not a 1:1 relationship between losses and kg of catfish harvested due to compensatory factors.  相似文献   

5.
6.
Experimental predation studies were conducted to evaluate and compare the predation threats of 10 species of native and non-native fishes on larvae of Pacific Lamprey, Entosphenus tridentatus, and Western Brook Lamprey, Lampetra richardsoni. The relative predatory threats were examined over four sets of binary factors, including the following: (a) short (2-day) or long (7-day) duration, (b) presence/absence of fine sediment, (c) live or dead larvae and (d) species of lampreys. Our short-term results showed a positive correlation with the sizes of predator fishes and consumed lamprey larvae. Also, most predator fishes had a significantly higher propensity to prey on lamprey larvae when sediment was absent. Conversely, this demonstrated the importance of sediment in protecting lamprey larvae from predation. Based on the predatory behaviour for live and dead larvae, predator fishes were classified into four groups using principal component analysis. Predation rates of larvae in sediment by piscivorous predators including Northern Pikeminnow Ptychocheilus oregonensis and Smallmouth Bass Micropterus dolomieu were lower and showed no differences even when the study duration was extended. In contrast, predation rates by benthic predators including White Sturgeon Acipenser transmontanus and Common Carp Cyprinus carpio, increased when we extended the study duration. This suggests that when given longer duration, benthic predators are more adept at consuming larvae within the sediment. These results provide important context for assessing the potential threat of predation on lampreys in streams, which is a key knowledge gap for lampreys.  相似文献   

7.
Sutchi catfish Pangasianodon hypophthalmus hatch with morphologically immature sensory organs; however, sensory organs develop rapidly with larval growth. Two-day-old larvae commenced ingesting Artemia nauplii. The larvae displayed many taste buds on the barbels, the head surface, and in the buccal cavity. Other sense organs were also well developed at this stage. Feeding experiments revealed that 2-day-old larvae ingested Artemia under both light and dark conditions, moreover, the larvae could ingest frozen dead Artemia. The ingestion rates for 4- and 7-day-old larvae were significantly higher under dark conditions than under light conditions. The rates using frozen dead Artemia were mostly higher than the rates using live Artemia. Therefore, feeding behavior under dark conditions is most likely not mediated by visual or mechanical senses, but rather by chemosensory senses, such as taste buds. Larval fish are vulnerable to predators; thus, if they can search for and eat food at night, they can avoid diurnal predators. The behavior observed here appears to represent their survival strategy. Moreover, these results suggest a new possibility that sutchi catfish larvae can be reared under dark or dim light conditions in order to improve survival and growth rates as in the case of African catfish Clarias gariepinus.  相似文献   

8.
Abstract. Three feeding trials, involving pre-pupal larvae of soldier fly, Hermetia illucens L., grown on poultry manure, were conducted to assess: (1) channel catfish, Ictalurus punctatus (Rafinesque), response to substitution of dried meal larvae for the fish meal component of the catfish diet and (2) if feeding 100% whole or chopped larvae to channel catfish or blue tilapia, Oreochromis aureus (Steindachner), will support normal growth comparable to those fed a commercial diet. Effects on fish quality were also evaluated. Replacement of 10% fish meal with 10% soldier fly larvae resulted in slower growth over a 15-week period for subadult channel catfish grown in cages (trial 1). However, the replacement did not reduce growth rate significantly when channel catfish were grown in culture tanks at a slower growth rate (trial 2). Feeding 100% larvae did not provide sufficient dry matter or protein intake for good growth for either species grown in tanks (trials 2 and 3). Chopping of the larvae improved weight gain and efficiency of the utilization.  相似文献   

9.
Fine ML, Mayo MS, Newton SH, Sismour EN. Largemouth bass predators reduce growth, feeding and movement in juvenile channel catfish. Ecology of Freshwater Fish 2011: 20: 114–119. © 2010 John Wiley & Sons A/S Abstract – Animals utilise sensory cues to make decisions that will decrease their vulnerability to predation. With a well‐developed olfactory system and taste buds located inside the mouth and on the external body surface, catfishes are excellent subjects to investigate nonconsumptive predator effects. Juvenile channel catfish Ictalurus punctatus are often eaten by largemouth bass Micropterus salmoides, and we tested the hypothesis that largemouth bass fed catfish would adversely affect foraging and growth in channel catfish. Groups of catfish were placed in tanks partitioned by a mesh screen: experimental tanks had a largemouth bass on the other half of the tank, and control tanks had an empty chamber. Experimental catfish exhibited a long‐term decrease in spontaneous motion, feeding and growth. Feeding catfish to the bass caused the experimental catfish to freeze after a multi‐second latency suggesting transport of an alarm cue. Thus, there were long‐term effects from the continuous presence of the bass and additional short‐term cues from the bass consuming a catfish.  相似文献   

10.
Previous research has shown that winter feeding is beneficial in preventing weight loss and maintaining catfish health. Although several studies suggest the importance of winter feeding of channel catfish, Ictalurus punctatus, less is known about optimal winter feeding strategies for channel‐blue hybrid catfish (♀ Ictalurus punctatus × ♂ Ictalurus furcatus). Three winter feeding treatments (unfed, fed daily, and fed based on temperature‐threshold feeding) were each assigned randomly to four replicate 0.10‐ha earthen ponds. All ponds were stocked with large channel‐blue hybrid catfish (0.96 ± 0.40 kg) at the rate of 3409 kg/ha and fed using a slow‐sink 28% protein pelleted feed. The two feeding treatments showed significantly greater mean weight at harvest, gross yield, and growth rates than the unfed fish after the 113‐d winter trial. Partial budget analysis indicated that additional costs incurred from the additional feed, fuel, and labor costs over the winter in fed treatments offset the additional revenue from daily winter feeding. However, in the temperature‐threshold feeding treatment, additional costs were similar to additional revenues when 10‐yr average prices were used. Results were sensitive to feed prices and spring catfish prices with positive net benefits from winter feeding at fish prices above $1.58/kg and feed prices below $0.286/kg.  相似文献   

11.
An alternative larval shrimp feeding regime, in which umbrella‐stage Artemia were constituting the first zooplankton source was evaluated in the culture of Litopenaeus vannamei. In a preliminary experiment, umbrella‐stage Artemia were fed to larvae from zoea 2 (Z2) to mysis 2 (M2) stages to identify the larval stage at which raptorial feeding starts and to determine daily feeding rates. The following experiment evaluated the performance of two feeding regimen that differed during the late zoea/early mysis stages: a control treatment with frozen Artemia nauplii (FAN), and a treatment with frozen umbrella‐stage Artemia (FUA). The ingestion rate of umbrella‐stage Artemia increased from nine umbrella per larvae day?1 at Z2 stage to 21 umbrella per larvae day?1 at M2. A steep increase in ingestion and dry weight from Z3 to M2 suggests a shift to a raptorial feeding mode at the M1 stage. Treatment FUA exhibited a significantly higher larval stage index (P < 0.05) during the period that zoea larvae metamorphosed to the mysis stage, and a higher final biomass, compared with treatment FAN. Based on these results and on practical considerations, a feeding regime starting with umbrella‐stage Artemia from Z2 sub‐stage can be recommended for L. vannamei larvae rearing.  相似文献   

12.
In 2004, research was conducted to compare chironomid larvae populations and their use by channel catfish (Ictalurus punctatus) fingerlings in two different culture systems. Over a 4‐month culture period, chironomid larvae densities in plastic‐lined ponds were significantly less than those in earthen ponds. The consumption of chironomid larvae by channel catfish fingerlings was related to chironomid abundance in earthen ponds. The significance of these findings is the possible relationship among pond type, initial consumption of commercial diets and subsequent survival rates of fingerling channel catfish.  相似文献   

13.
Plankton community structure and chlorophyll a concentration were compared in twelve 0.1 ha earthen ponds co‐stocked with channel catfish (Ictalurus punctatus Rafinesque, 1818) in a multiple‐batch culture (initial biomass=5458 kg ha?1) and a planktivore, threadfin shad (Dorosoma petenense Güther, 1867; initial biomass=449 kg ha?1), during the April–November growing season. We used a completely randomized design in a 2 × 2 factorial arrangement to test the planktivore level (presence or absence of threadfin shad) and channel catfish feeding frequency (daily or every third day). Channel catfish were fed a 32% protein feed to apparent satiation on days fed. The presence of threadfin shad affected phytoplankton and zooplankton community structure more than did feeding frequency, and the impact in ponds was more pronounced after 1 July. The numbers of all major groups of zooplankton were lower in ponds with threadfin shad, but were unaffected by the feeding frequency. Chlorophyll a concentration before 1 July was higher in ponds with threadfin shad and unaffected by the feeding frequency, whereas after 1 July it was higher in ponds without threadfin shad and that were fed daily. Phytoplankton community structure after 1 July was dominated by nuisance algal bloom genera of cyanobacteria in ponds without threadfin shad and by Bacillariophyceae in ponds with threadfin shad.  相似文献   

14.
Knowledge of ingredients assimilation and biomass contribution to recipient fish is important in feed formulation. The stable isotopes of 13C and 15N were used to investigate the assimilation and biomass contribution of bambaranut, Voandzeia subterranea, meal (BNM), corn, Zea mays, meal (CM) and fish meal (FM), in FM substituted diets of first feeding African catfish, Clarias gariepinus, during a 30‐d experiment. The catfish larvae were stocked at 40 fish/15 L three replicate glass aquaria. Larvae were fed with experimental diets varying FM, BNM, and CM. Proportions of FM : BNM : CM in the experimental diets were: feed 1 (F1) 60:20:20; feed 2 (F2) 40:40:20; feed 3 (F3) 20:60:20; and feed 4 (F4) 20:20:60. Feeds and larval stable isotopes of δ13C and δ15N were analyzed. Larval specific growth rates (SGRs) were high, enhancing incorporation of dietary δ13C and δ15N. The SGR was highest for catfish fed F1 and F2 but significantly lower for those on F3 and F4. Results of δ13C and δ15N analyses showed that the biomass contribution from FM was similar to BNM, which were better than CM at equal inclusion levels. The nitrogen contribution per ingredient to larval somatic crude protein was increasing with increases in ingredient inclusion and assimilation. Stable isotope analysis is useful for analyzing assimilation and utilization of nutrients.  相似文献   

15.
Size-dependent predation rates on marine fish larvae by the ctenophore Mnemiopsis leidyi , scyphomedusa Chrysaora quinquecirrha , and planktivorous fish Anchoa mitchilli were estimated via experiments in 3.2 m3 me-socosms. Predation rates on larvae of the goby Gobio-soma bosci were estimated in relation to 1) length of larval prey, 2) presence or absence of alternative < 1 mm zooplankton prey, and 3) a predator-prey interaction between the scyphomedusa and ctenophore. The consumption rate of larvae by the three predators generally declined as larval length increased. The ctenophore ate fewer (1.0 d-1 per predator) larvae than did the medusa (7.8 d -1 per predator) or bay anchovy (4.0 d -1 per predator), but it consumed larvae in all size classes tested (3.0–9.5 mm SL). Predation by bay anchovy and the medusa was more size-dependent: 3.0–5.0 mm larvae were most vulnerable. Fewer larvae were eaten by the ctenophore and bay anchovy when zooplankton alternative prey was available, but predation on larvae by the medusa was not influenced by alternative zooplankton prey. Consumption rate of fish larvae by the medusa was reduced 20–25% when the ctenophore was present as its alternative prey. An encounter-rate model was developed and its parameters estimated from the experimental results. Model simulations indicated that the relationship between larval size and vulnerability is dependent on size, swimming speed, and behavior of both predators and larvae, and that bigger or faster-growing fish larvae are not always less vulnerable to predation.  相似文献   

16.
Temporary accumulation of ascorbic acid 2-sulfate (AAS) was measured to estimate food intake and gut evacuation in larvae of African catfish. Fish larvae were fed decapsulated cysts of Artemia containing AAS. In a first experiment it was found that no biosynthesis of AAS occurs in the larvae of this species. In a second experiment, the gut contents of the fish larvae fed were calculated as they changed during development. In a third experiment, the gut evacuation rate of fish larvae was determined during continuous and discontinuous feeding regimes in the first five days after the start of exogenous feeding. Food consumption by catfish larvae increased from 46.5% of their body dry weight (BDW) on day 1 after the start of exogenous feeding to 53.8% BDW on day 3. Thereafter, food consumption decreased to 27.8% BDW on day 5. A similar pattern was observed for gut evacuation, which increased during the first days of exogenous feeding and decreased as fish growth continued. The rate of gut evacuation in a continuous feeding regime was significantly higher (P < 0.05) than that under discontinuous feeding. On day 1 post-hatch and 7 h after first food ingestion the fish larvae evacuated 87% of the food in continuous feeding compared with 43% under discontinuous feeding. It was found that gut emptying differs during larval development. Under continuous feeding, on days 1 and 3 post-hatch and 11 h after the first meal 90% of the food was evacuated compared with 71% evacuated on day 5. The advantages and limitations of the AAS method for estimation of food consumption by fish larvae are discussed.  相似文献   

17.
The sutchi catfish Pangasianodon hypophthalmus is an important species for aquaculture in Southeast Asia. However, larvae typically have low survival rates due to their predilection for cannibalism during rearing. This study investigated larval feeding behavior and rearing conditions. The former experiments were performed to elucidate the role of sensory organs in feeding, and the latter experiments examined the effect of dim light on larval rearing and survival rates. Neither lighting conditions (light and dark) nor blocking of free neuromasts by streptomycin had significant effects on feeding behavior. Therefore, the feeding behavior of sutchi catfish larvae most likely depends on chemosensing rather than visual sensing. In the later experiments, larval rearing at 0.1 l× yielded significantly higher survival rates than other lighting conditions (0.00, 1, 10, 100 l×). Survival in the 0.1 l× group was almost three times higher than in the 100 l× group. Moreover, larvae reared under 0.1 l× showed steady growth. Therefore, it is concluded that 0.1 l× is the optimum light intensity for sutchi catfish larval rearing.  相似文献   

18.
The alkaline proteolytic activity in the gut of African catfish larvae was studied during short time ranges from 30 min to 4 h after ingestion of decapsulated Artemia cysts. The variation in total protease and trypsin activities during the day was monitored during starvation, after one single meal ingestion, and during continuous feeding. In starved larvae the enzymatic activity was low and did not change in time. No significant endogenous secretion of digestive enzymes was detected. The level of alkaline proteolytic activity found in starved larvae was further considered as the basal level. In larvae fed only one meal during the day, the enzyme activity significantly increased from 3 h post-feeding up to a maximum level found 12 h after feeding. In the larvae receiving a meal every 4 h, the effect of feeding on the proteolytic activity was significantly different from the one in fish fed only once a day. The total protease activity in this dietary treatment changed according to the time of feeding and fluctuated around a constant level, which was intermediate between the maximum and the basal level. No rhythmic cycle of enzyme production in the fish was observed when the proteolytic activity was studied during a cycle of 24 h. When specific trypsin activity was measured, a similar pattern was found as with the total protease. The contribution of digestive enzymes from Artemia to the total digestion of food by the catfish larvae was calculated to be less than 1% of the total amount of the proteolytic activity measured in the larval gut.  相似文献   

19.
Abstract— Predation on American shad ( Alosa sapidissima ) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner ( Cyprinella spiloptera ), mimic shiner ( Notropis volucellus ) and juvenile smallmouth bass ( Micropterus dolomieu ). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.  相似文献   

20.
Variability in the high mortality rate during early life stages is considered to be one of the principal determinants of year‐class variability in fish stocks. The influence of water column stability on the spatial distribution of fish larvae and their prey is widely acknowledged. Water column stability may also impact growth through the early life history of fishes, and consequently alter the probability of survival to maturity by limiting susceptibility to predation and starvation. As a test of this concept, the variability in condition and growth of dab (Limanda limanda) and sprat (Sprattus sprattus) larvae was investigated in relation to seasonal stratification of the water column in the north‐western Irish Sea. RNA/DNA ratios and otolith microincrement analysis were used to estimate nutritional status and recent growth rates of larvae captured on four cruises in May and June of 1998 and 1999. Dab and sprat larvae were less abundant in 1999 and were in poorer condition with lower growth rates than in 1998. Dab larvae of <13 mm also exhibited spatial variability with higher RNA/DNA ratios at the seasonal tidal‐mixing front compared with stratified and mixed water masses. However, the growth and nutritional status of sprat larvae was uncorrelated to water column stability, meaning the more favourable feeding conditions generally associated with the stratified pool and tidal‐mixing front in the Irish Sea were not reflected in the growth and condition of these larvae. This suggests that the link between stability, production and larval growth is more complicated than inferred by some previous studies. The existence of spatio‐temporal heterogeneity in the growth and condition of these larvae has implications for larval survival and the recruitment success of these species in the Irish Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号