首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《畜牧与兽医》2015,(12):50-53
采用国际标准的Andersen-6级空气微生物样品收集器在5个养鹿舍(A、B、C、D、E)空气中收集微生物气溶胶。通过对养鹿舍环境中气载需氧菌、空气中大肠杆菌、空气中肠球菌含量的检测及其在Andersen-6级采样器上的分布情况,评估养鹿舍的环境卫生质量以及推断微生物气溶胶对饲养人员及鹿自身可能造成的危害。结果表明:鹿舍环境中微生物气溶胶的浓度较高,而且大部分空气微生物气溶胶粒子的空气动力学直径较小,很容易进入人和鹿的呼吸道深部,对机体造成危害;5个鹿舍内气载需氧菌含量在鹿舍C中最高,为4.06×105cfu/m~3,鹿舍E内气载需氧菌含量最低,为7.80×104cfu/m~3,5个鹿舍内空气需氧菌含量之间差异均不显著(P0.05),但是,鹿舍C和D中可吸入的需氧菌含量与其他鹿舍之间差异显著(P0.05)。  相似文献   

2.
兔舍环境空气微生物气溶胶的检测   总被引:5,自引:0,他引:5  
采用国际标准ANDERSEN6级微生物空气样品收集器,选用血葡萄糖琼脂培养基,分别对两个不同种兔舍环境空气微生物进行监测。其舍内需氧菌含量分别为4.19×103~5.55×104CFU/m3、6.35×103CFU/m3空气,需氧革兰氏阴性细菌含量分别为3.04×102~3.27×103CFU/m3、4.68×102CFU/m3空气。根据微生物气溶胶颗粒在ANDERSEN-收集器不同层级上的分布情况得知,约有50%的需氧细菌气溶胶颗粒和革兰氏阴性细菌气溶胶颗粒分布在3、4层上,空气动力学直径(Dae50)在2~6μm之间,它们能进入人、畜的气管、支气管,甚至细支气管,对饲养员和动物的呼吸道构成严重威胁。  相似文献   

3.
本研究通过评估不同饲养卫生清洁状况下微生物气溶胶的浓度对肉鸭生产性能的影响,为建立家禽养殖环境微生物气溶胶标准提供参考。选用600只1日龄的樱桃谷肉鸭,随机平均分配到1个对照组(A组)和4个清洁卫生条件逐步变差的试验组(B、C、D、E组),每组3个重复,每个重复40只。使用国际标准的Andersen-6级和AGI-30空气微生物采集器收集各组空气样品,检测微生物气溶胶浓度。检测鸭血清促肾上腺皮质激素(ACTH)浓度变化,评估其应激强度。与此相应地对肉鸭生长性能、屠宰指标等进行检测与评定,分析微生物气溶胶对肉鸭机体的影响。结果显示:当肉鸭舍的微生物气溶胶浓度升高至气载需氧菌为2.96×105CFU/m3、气载真菌为2.63×104CFU/m3、气载革兰氏阴性菌为3.09×104CFU/m3、气载内毒素为41.78×103EU/m3时(D组),该组肉鸭的血清ACTH浓度、料重比、死淘率显著或极显著高于对照组(P0.05或P0.01),该组肉鸭的平均日增重、胸肌率、胸肌重、屠宰率、屠体重显著或极显著低于对照组(P0.05或P0.01)。由此可见,微生物气溶胶可显著降低肉鸭的生产性能,气载需氧菌2.96×105CFU/m3、气载真菌2.63×104CFU/m3、气载革兰氏阴性菌3.09×104CFU/m3、气载内毒素41.78×103EU/m3可初步作为肉鸭养殖环境中的微生物气溶胶上限标准。  相似文献   

4.
为评估笼养鸡舍环境卫生质量及推断微生物气溶胶对饲养人员及肉鸡可能造成的危害,本试验采用FA-1型六级筛孔撞击式空气微生物采样器分别对3个笼养肉鸡场鸡舍环境中气载需氧菌、气载大肠杆菌、气载金黄色葡萄球菌、气载真菌气溶胶的含量进行检测,并对其气溶胶粒子分布情况进行分析。结果表明:鸡舍环境中气载需氧菌浓度可达21.4×10~3 CFU/m~3,气载大肠杆菌浓度可达0.71×10~3 CFU/m~3,气载金黄色葡萄球菌浓度均值可达2.52×10~3 CFU/m~3,气载真菌浓度可达7.28×10~3 CFU/m~3;鸡舍内环境气载需氧菌在FA-1型六级筛孔撞击式空气微生物采样器第1层级分布比例显著高于其他层级(P0.05),气载大肠杆菌在第4层级分布比例显著高于其他层级(P0.05),气载金黄色葡萄球菌在第5层级分布比例显著高于其他层级(P0.05),气载真菌在第4层级分布比例显著高于其他层级(P0.05)。  相似文献   

5.
钟召兵  王宁 《中国动物检疫》2014,31(11):101-105
为深入了解畜禽舍环境中气载细菌微生物的空气动力学粒径分布规律,并评估其潜在的健康危害风险,采用Andersen-6级微生物空气采样器以血-琼脂培养基、沙氏培养基和高氏合成1号培养基为采样介质,对鸡舍、猪舍、牛舍环境中空气样品进行系统定点取样、测定及分析。研究结果表明,鸡舍环境中气载需氧菌含量最高,猪舍次之,牛舍最低;空气细菌粒径分布均为第Ⅰ级最高,鸡舍空气粒径呈偏态分布,牛舍、猪舍分别在第Ⅲ级和第Ⅳ级出现第2个峰值。携带细菌可吸入微粒在猪舍环境中比例最大。空气真菌与放线菌均在第Ⅳ级最高,携带真菌和放线菌可吸入粒子的比例显著大于细菌(P<0.05)。鸡舍、猪舍、牛舍空气微生物粒径各级分布比例基本一致。在鸡舍、猪舍、牛舍每天约有6.1×105CFU、4.7×104CFU和3.6×104CFU气载细菌微生物可分别进入人和动物小支气管或直接进入肺泡,从而对人和动物健康构成潜在危害。  相似文献   

6.
采用ANDERSEN-6级空气微生物样品收集器,以5%公绵羊血琼脂和麦康凯3号培养基为采样介质,分别对3个不同兔场环境中气载需氧菌含量、气载革兰氏阴性菌含量与菌群组成进行了检测。结果表明:兔舍内气载需氧菌含量在0.78×103~20.10×103 CFU/m3之间,气载需氧革兰氏阴性菌含量在0.39×102~10.30×102 CFU/m3之间,占需氧菌总数的2.12%~10.20%;革兰氏阴性菌群包括肠杆菌、奈瑟氏菌、巴氏杆菌和假单胞菌,肠杆菌科细菌中大肠埃希氏菌占多数。在其中2个兔舍中还检测到可导致兔发生肺炎的肺炎克雷伯氏菌。  相似文献   

7.
通过检测河北省不同地区6种有代表性建筑类型的肉牛舍内外空气中的细菌含量,对夏季和冬季肉牛舍的空气环境质量进行分析。夏季各地区牛舍中不同检测高度的细菌数量没有表现出显著差异(P>0.05),而冬季3种密闭式牛舍内,1.2m高的细菌数量均显著高于0.6m(P<0.05),分别达到98.2CFU/m3和68.3CFU/m3;夏冬两季不同建筑类型的牛舍内细菌数量均显著高于舍外(P<0.05),且冬季密闭式牛舍内细菌数量达到75.5×103~88.1×103 CFU/m3,是舍外的2.6~9.6倍,远远超过夏季(83.2×103 CFU/m3)。该研究为肉牛舍的设计和牛舍环境的改善提供理论基础。  相似文献   

8.
为了客观的评估气载内毒素和革兰阴性菌对鹿舍环境的污染及对饲养员和动物体健康的危害,本试验采用国际标准的AGI-30(All Glass Impinger,AGI-30)液体冲击式空气微生物收集器和Andersen-6级撞击式空气微生物收集器对山东省境内5处不同的鹿场舍内气载内毒素进行了检测。结果表明,鹿舍空气中气载内毒素的浓度介于0.085×10~3 EU/m~3~1.380×103 EU/m~3,鹿舍内气载内毒素含量在鹿舍C中最高,在鹿舍B中最低。这5处鹿场舍内气载内毒素的浓度均部分超出了内毒素对人体无影响的标准(100EU/m~3)。鹿舍空气中气载革兰阴性菌的浓度介于0.019×10~3 CFU/m~3~1.580×10~3 CFU/m~3之间。其中优势菌群是肠杆菌,大肠埃希菌最常见。气载需氧菌的浓度介于4.580×10~3 CFU/m3~5.240×104 CFU/m~3之间。气载革兰阴性菌在需氧菌含量中的比例为0.41%~3.02%。通过该研究,可以对鹿舍的环境有一个客观的认识,可作为鹿舍环境评定的一种重要参考指标。  相似文献   

9.
本研究采用A ndersen-6级空气微生物样品收集器,选用血-葡萄糖-琼脂培养基为采样介质,对两个不同种兔舍环境空气中需氧菌总数和葡萄球菌总数进行了检测,并对葡萄球菌的菌群组成进行了分析。结果表明,两个兔舍内需氧菌含量分别为1.73~85.8×103CFU/m3、2.71~9.66×103CFU/m3空气,葡萄球菌含量分别为0.94~7.84×103CFU/m3、1.02~6.54×103CFU/m3空气。兔舍空气中葡萄球菌主要包括金黄色葡萄球菌、腐生葡萄球菌、表皮葡萄球菌、科氏葡萄球菌、头状葡萄球菌和马胃葡萄球菌,其中金黄色葡萄球菌的含量占葡萄球菌总数的26.3%~29.6%,其次是腐生葡萄球菌和表皮葡萄球菌。另外,还对需氧菌和金黄色葡萄球菌在A ndersen-6级收集器不同层级上的分布情况进行了统计分析,结果表明,约有56.4%的需氧菌和49%金黄色葡萄球菌分布在3~6层上,空气动力学直径(A erody-nam ic d iam eter,D ae)在6~0.2μm,它们能进入人、畜的气管、支气管,甚至细支气管,对饲养员和动物的呼吸道构成严重危害。  相似文献   

10.
禽舍微生物气溶胶含量及其空气动力学研究   总被引:8,自引:0,他引:8  
采用Andersen-微生物空气样品收集器,选用普通营养琼脂和金黄色葡萄球菌选择培养基对一个种鸡场舍环境空气进行监测。其需氧菌含量从3.12×104到9.01×105,金黄色葡萄球菌含量波动于2.0×103~3.3×104CFU/m3之间。根据微生物气溶胶颗粒在Andersen-收集器不同层级上的分离情况得知,22.5%的需氧菌、1.8%的金黄色葡萄球菌气溶胶颗粒的空气动力学直径(d50)为Φ0.65~2.1μm,它们能进入人、畜的肺泡,对人畜呼吸道构成感染威胁。  相似文献   

11.
本文采用6级Andersen生物空气采样器和常用真菌计数培养基,在鸡舍入口处收集气溶胶真菌,经培养和纯化鉴定出78种真菌,其中包括黄曲霉、烟曲霉、黑曲霉及镰刀菌等在内的50余种真菌。研究表明鸡舍入口处空气真菌污染程度与鸡舍内没有显著差异。早晨气溶胶真菌浓度明显低于中午(P=0.07)和晚间(P=0.05)的浓度,且夏秋季节浓度相对较高,峰值在7月份。鸡舍内气溶胶真菌的年平均浓度为2.3×103 CFU/m3。黄曲霉、烟曲霉、黑曲霉在鸡舍空气中的浓度相对较高,分别超过真菌气溶胶组成平均浓度77.7 CFU/m3、63CFU/m35、7.1 CFU/m3,而镰刀菌是常见的空气真菌,其总平均浓度为74.6 CFU/m3,比平均值高出45.3 CFU/m3。平均CMD值分别为3.1μm;GSD分别为2.1。每分钟可沉积到支气管和直接侵入肺泡的活性真菌量分别是居室的3.4倍和3.3倍。本研究探讨了真菌气溶胶不同时间和季节的变化规律,并从其组成、浓度及粒子大小定量评估采样点鸡舍真菌气溶胶的危害,为有效控制禽类真菌病的流行提供科学依据和预警资料。  相似文献   

12.
本研究采用Andersen-6级空气微生物样品收集器,选用血-葡萄糖-琼脂培养基为采样介质,对两个不同种兔舍环境空气中需氧菌总数和葡萄球菌总数进行了检测,并对葡萄球菌的菌群组成进行了分析.结果表明,两个兔舍内需氧菌含量分别为1.73~85.8×103CFU/m3、2.71~9.66×103CFU/m3空气,葡萄球菌含量分别为0.94~7.84×103CFU/m3、1.02~6.54×103CFU/m3空气.兔舍空气中葡萄球菌主要包括金黄色葡萄球菌、腐生葡萄球菌、表皮葡萄球菌、科氏葡萄球菌、头状葡萄球菌和马胃葡萄球菌,其中金黄色葡萄球菌的含量占葡萄球菌总数的26.3%~29.6%,其次是腐生葡萄球菌和表皮葡萄球菌.另外,还对需氧菌和金黄色葡萄球菌在Andersen-6级收集器不同层级上的分布情况进行了统计分析,结果表明,约有56.4%的需氧菌和49%金黄色葡萄球菌分布在3~6层上,空气动力学直径(Aerodynamic diameter,Dae)在6~0.2μm,它们能进入人、畜的气管、支气管,甚至细支气管,对饲养员和动物的呼吸道构成严重危害.  相似文献   

13.
应用Andersen-多层级微生物收集器和KS-92 液体喷冲器,对乳牛舍内、外空气细菌含量,即厌氧菌、需氧菌总数以及产气荚膜杆菌(魏氏梭菌)进行了定性定量分析。结果表明,舍内空气中厌氧菌总数达到2098~4 295 个/m 3 ,其中魏氏梭菌为0~5.5 个/m 3 (Andersen-收集器);同时在舍内空气中,需氧菌总数为2050~18 094 个/m 3 。在舍邻近(4 m 处)的环境空气中厌氧菌总数为239~2 282 个/m 3 ,其中魏氏梭菌0~2.0个/m 3 ;需氧菌总数为297~4 276 个/m 3 。结果证明,舍内环境的细菌能向舍外环境传播,舍内、外环境微生物含量的高低浮动反映了舍内的卫生状况。  相似文献   

14.
不同乳牛舍环境空气中细菌含量的比较研究   总被引:1,自引:0,他引:1  
采用自然沉降法对南京3个规模化奶牛场和3个奶牛小区泌乳奶牛舍内细菌含量进行监测和比较。结果显示,牛舍环境空气中的细菌菌落总数,不同的牛舍不同采样点、不同的培养基其结果均不相同。运动场细菌菌落总数少于牛舍内。NA培养基菌落数最高达33.81×103 CFU/m3,MAC和S.S培养基在多个分布点无细菌生长。6个牧场空气中的细菌菌落总数为F场>E场>B场>C场>A场>D场。牛舍的空气细菌总数与牛舍规模化程度无关,而与各牧场牛舍卫生管理有很大的相关性。从270个样本中共分离到338株细菌,A、B牧场主要是葡萄球菌,分别占分离菌的75.34%(55/73)和60.61%(40/66);C、E、F牧场主要是肠杆菌,分别占分离菌的51.22%(42/82)、62.16%(23/37)、61.11%(33/54);D牧场葡萄球菌占分离菌的46.15%(12/26),肠杆菌和链球菌分别占26.92%(7/26)。结果表明,规模化奶牛场和奶牛小区空气细菌总数无明显差异。  相似文献   

15.
固体甲醛熏蒸消毒对畜禽舍微生物气溶胶的影响   总被引:1,自引:0,他引:1  
《中国兽医学报》2016,(10):1718-1721
使用国际标准的Anderson-6级空气微生物收集器检测消毒前后牛、羊、鸡、猪舍内和舍外的气载需氧菌、气载真菌和气载大肠杆菌浓度变化,并分析以上各菌种在上述收集器不同层级中的比例变化。结果显示,消毒后的动物舍内的气载需氧菌、气载真菌和气载大肠杆菌浓度均显著低于消毒前的浓度(P0.05或P0.01),消毒后的舍内以上微生物气溶胶浓度与舍外的浓度差异不显著(P0.05),且消毒后舍内的气载需氧菌、气载真菌和气载大肠杆菌在收集器5,6层级上的比例整体上呈现大幅下降的趋势。由此可见,固体甲醛熏蒸的消毒方式可有效降低畜禽舍内的微生物气溶胶浓度,且对可进入肺泡的小颗粒微生物气溶胶消毒效果更佳。  相似文献   

16.
绿色荧光蛋白标记大肠杆菌气溶胶的发生及其传播模式   总被引:1,自引:0,他引:1  
为了认识微生物气溶胶的发生与传播规律,作者建立了细菌气溶胶传播模型,即试验鸡摄入用绿色荧光蛋白(GFP)基因标记的E. Coli JM109后,检测这种大肠杆菌在鸡体的排出及其形成气溶胶与传播过程.鸡饮完含E coli JM109-pGFP菌液(5.0×1010CFU·只-1)后,采用ANDERSEN-6级空气微生物样品收集器分别在鸡栏内、栏外2、5、10、20 m收集气载E.coli JM109-pGFP.通过每一个采样点JM109-pGFP浓度的变化来评估动物舍微生物气溶胶向舍外环境的传播情形.结果显示,试验鸡饮完含E.coli JM109-pGFP的饮水,0.5 h左右开始排出含E.coli JM109-pGFP的粪便,此时测量栏内和栏外2、5、10、20 m处JM109-pGFP气溶胶浓度达最高,分别为1.531×103、8.080×102、3.360×102、2.250×102、6.600×10 CFU·m-3;栏内与栏外不同距离间的JM109-pGFP浓度差异不显著(P>0.05).30 h时只能在栏框内收集到JM109-pGFP,为7 CFU·m-1;36 h后在栏框内也消失.结果表明,动物排泄物中的细菌能够形成气溶胶,并能通过舍内外气体交换传播到舍外,造成周边环境的生物污染.  相似文献   

17.
比较不同检测方法对微生物气溶胶检验效果的影响。采用国际标准的AGI-30空气采样器,收集空气样品,分别用培养计数法和DAPI(4,6-联脒-2-苯基吲哚)染色计数法来比较不同养殖环境中微生物气溶胶的浓度。培养计数法测得鸡舍、猪舍和牛舍环境中微生物气溶胶的浓度分别为5.73×105~6.72×106cfu/m3空气,9.5×105~4.01×106cfu/m3空气,5.4×104~8.33×105cfu/m3空气,而DAPI染色计数的浓度分别为8.0×106~3.25×108cell/m3空气,1.5×107~2.28×108cell/m3空气,9.0×105~5.93×107cell/m3空气。培养计数法所得浓度仅为DAPI染色计数法的0.04%~10.4%。染色计数法可能会更加客观的反映环境中微生物气溶胶的浓度。  相似文献   

18.
为评估笼养鸭舍环境卫生质量和不同笼养鸭舍微生物气溶胶浓度的变化规律,采用FA-1型六级筛孔撞击式空气微生物采样器分别对三个笼养肉鸭舍环境中气载需氧菌、气载真菌、气载金黄色葡萄球菌气溶胶的含量进行了检测。结果显示:鸭舍环境中气载需氧菌浓度可达7.24×10~3cfu/m~3,气载金黄色葡萄球菌浓度可达0.56×10~3cfu/m~3,气载真菌浓度可达1.66×10~3cfu/m~3;整个养殖周期中鸭舍内气载需氧菌、气载金黄色葡萄球菌和气载真菌的浓度在鸭14日龄时最高,然后开始下降;三个鸭舍内在消毒前后均未检出金黄色葡萄球菌,但随鸭日龄增长开始出现。通过对笼养鸭舍内微生物气溶胶的浓度、变化规律进行研究,可为笼养肉鸭场生物安全体系的制定提供依据。  相似文献   

19.
鸡舍真菌气溶胶潜在危害的定量评估   总被引:3,自引:0,他引:3  
本文采用6级Andersen生物空气采样器和常用真菌计数培养基,在鸡舍入口处收集气溶胶真菌,经培养和纯化鉴定出78种真菌,其中包括黄曲霉、烟曲霉、黑曲霉及镰刀菌等在内的50余种真菌.研究表明鸡舍入口处空气真菌污染程度与鸡舍内没有显著差异.早晨气溶胶真菌浓度明显低于中午(P=0.07)和晚间(P=0.05)的浓度,且夏秋季节浓度相对较高,峰值在7月份.鸡舍内气溶胶真菌的年平均浓度为2.3×103 CFU/m3.黄曲霉、烟曲霉、黑曲霉在鸡舍空气中的浓度相对较高,分别超过真菌气溶胶组成平均浓度77.7 CFU/m3、63CFU/m3、57.1 CFU/m3,而镰刀菌是常见的空气真菌,其总平均浓度为74.6 CFU/m3,比平均值高出45.3 CFU/m3.平均CMD值分别为3.1μm;GSD分别为2.1.每分钟可沉积到支气管和直接侵入肺泡的活性真菌量分别是居室的3.4倍和3.3倍.本研究探讨了真菌气溶胶不同时间和季节的变化规律,并从其组成、浓度及粒子大小定量评估采样点鸡舍真菌气溶胶的危害,为有效控制禽类真菌病的流行提供科学依据和预警资料.  相似文献   

20.
畜禽舍微生物气溶胶向环境扩散的研究   总被引:7,自引:0,他引:7  
应用一个扩散模式估算来自畜禽舍的微生物气溶胶向环境的扩散。在此考虑到了较大悬载尘埃颗粒的沉落和气悬状态下细菌生物学活性对空气微生物传播的影响。菌源高度 (栏舍废气排放孔 )认作 3m和 1 0m。当扩散级为IV和菌源强度为 1 0 6CFU/s时 ,在距离畜禽舍 1 0 0 ,2 0 0 ,30 0 ,40 0 ,5 0 0m处细菌含量分别为 5 0 ,1 0 0 ,2 0 0 ,5 0 0和 1 0 0 0CFU/m3。研究证明 ,畜禽舍之间保持一定距离将很大程度地减少气源性感染的威胁 ;畜牧场应建设在距居民区最少 5 0 0m的地方。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号