首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large wood (LW) is critical to the structure and function of streams and forests are the main LW source to stream channels. To assess the influence of forest cover changes at different spatial scales on in-stream LW quantity, we selected eighteen catchments (2nd–4th order) in Southeastern Brazil with forests at different levels of alterations. In each catchment we quantified the pattern of forest cover (% cover and relative catchment position), the physical characteristics of catchments (elevation and slope), the characteristics of channels (wetted channel width and depth), the abundance and volume of in-stream LW, and the frequency of LW pools. We used simple and multiple linear regression to assess the response of LW variables to landscape and stream reach variables. Most of the LW was relatively small; 72 % had a diameter <20 cm, and 66 % had a length <5 m. Although percent forest cover at reach scale had substantial support to explain LW variables, the best predictors of LW variables were forest cover at broader scales (LW abundance and LW pool frequency were best predicted by forest at intermediate distance at the catchment scale and LW volume was best predicted by forest cover at the drainage network scale), suggesting that downstream transport is an important process in addition to local processes in our study area. These findings have important management implications because although low forested reaches receive less LW from local forests (or no LW in the case of deforested stream reaches), they are receiving LW from upstream forested reaches. However, the material is generally small, unstable and likely to be easily flushed. This suggests that not only should riparian forest conservation encompass the full drainage network, but forests should also be allowed to regenerate to later successional stages to provide larger, higher quality LW for natural structuring of streams.  相似文献   

2.
A multi-scale analysis of landscape statistics   总被引:23,自引:2,他引:21  
Cain  Douglas H.  Riitters  Kurt  Orvis  Kenneth 《Landscape Ecology》1997,12(4):199-212
It is now feasible to monitor some aspects of landscapeecological condition nationwide using remotely-sensed imagery andindicators of land cover pattern. Previous research showedredundancies among many reported pattern indicators andidentified six unique dimensions of land cover pattern. Thisstudy tested the stability of those dimensions and representativepattern indicators across different types of land cover maps. Themaps were derived from Landsat Thematic Mapper images of theTennessee River and Chesapeake Bay watersheds, and they differedin resolution, number of attributes, and method of delineatinglandscape unit boundaries. A multivariate analysis of patternmetrics was conducted separately for each map, and the resultswere then compared among types of maps. Measures of land coverdiversity, texture, and fractal dimension were more consistentthan measures of average patch shape or compaction among the landcover maps.  相似文献   

3.

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.
  相似文献   

4.
Understanding the driving forces behind the distribution of threatened species is critical to set priorities for conservation measures and spatial planning. We examined the distribution of a globally threatened bird, the corncrake (Crex crex), in the lowland floodplains of the Rhine River, which provide an important breeding habitat for the species. We related corncrake distribution to landscape characteristics (area, shape, texture, diversity) at three spatial scales: distinct floodplain units (“floodplain scale”), circular zones around individual observations (“home range scale”), and individual patches (“patch scale”) using logistic regression. Potential intrinsic spatial patterns in the corncrake data were accounted for by including geographic coordinates and an autocovariate as predictors in the regression analysis. The autocovariate was the most important predictor of corncrake occurrence, probably reflecting the strong conspecific attraction that is characteristic of the species. Significant landscape predictors mainly pertained to area characteristics at the patch scale and the home range scale; the probability of corncrake occurrence increased with potential habitat area, patch area, and nature reserve area. The median potential habitat patch size associated with corncrake occurrence was 11.3 ha; 90% of the corncrake records were associated with patches at least 2.2 ha in size. These results indicate that the corncrake is an area-sensitive species, possibly governed by the males’ tendency to reside near other males while maintaining distinct territories. Our results imply that corncrake habitat conservation schemes should focus on the preservation of sufficient potential habitat area and that existing management measures, like delayed mowing, should be implemented in relatively large, preferably contiguous areas.  相似文献   

5.

Context

Multi-scale analyses are a common approach in landscape ecology. Their aim is to find the appropriate spatial scale for a particular landscape attribute in order to perform a correct interpretation of results and conclusions.

Objectives

I present an R function that performs statistical analysis relating a biological response with a landscape attribute at a set of specified spatial scales and extracts the statistical strength of the models through a specified criterion index. Also, it draws a plot with the value of these indexes, allowing the user to choose the most appropriate spatial scale. This paper introduces the usage of multifit and demonstrates its functionality through a case study.

Conclusions

The spatial scale at which ecologists conduct studies may change study outcomes and conclusions. Because of this, landscape ecologists commonly conduct multi-scale studies in order to establish an appropriate spatial scale for particular biological or ecological responses. The tool presented here allows ecologists to simultaneously run several statistical models for a response variable and a specified set of spatial scales, automating the process of multi-scale analysis.
  相似文献   

6.
Land cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling.  相似文献   

7.
8.
Chang  Ping  Olafsson  Anton Stahl 《Landscape Ecology》2022,37(5):1271-1291
Landscape Ecology - The roles of landscape variables regarding the recreational services provided by nature parks have been widely studied. However, the potential scale effects of the relationships...  相似文献   

9.
10.

Purpose

Human-mediated landscape changes alter habitat configuration, which strongly structures animal distributions and interspecific interactions. The effects of anthropogenic disturbance on predator–prey relationships are fundamental to ecology, yet less well understood. We determined where predation events occurred for fawn and adult female mule deer from 2008 to 2014 in critical winter range with extensive energy development. We investigated the relationship between predation sites, energy infrastructure, and natural landscape features across contiguous areas experiencing different degrees of energy extraction during periods of high and low intensity development.

Methods

We contrast spatial correlates of 286 mortality locations with random landscape locations and mule deer distribution estimated from 350,000 GPS locations. We estimated predation risk with resource selection functions and latent selection difference functions.

Results

Relative to the distribution of mule deer, predation risk was lower closer to pipelines and well pads, but higher closer to roads. Predation sites occurred more than expected relative to availability and deer distribution in deeper snow and non-forested habitats. Anthropogenic features had a greater influence on predation sites during the period of low activity than high activity, and natural landscape characteristics had weaker effects relative to anthropogenic features throughout the study. Though canids accounted for the majority of predation events, felids exhibited stronger landscape associations, driving the observed spatial patterns in predation risk to mule deer.

Conclusions

The emergence of varied interactions between predation and landscape features across contexts and years highlights the complexity of interspecific interactions in highly modified landscapes.
  相似文献   

11.
This paper develops and applies two concepts which are fundamental to landscape ecology. These concepts concern biocybernetics, which is the theory of regulation of biological and ecological systems, and thermodynamics, especially the flux of energy and the production of entropy. The landscape state factors, including site conditions and fluxes of energy, materials, and organisms, are shaped by the biocybernetic and thermodynamic processes. This theory provides us a way of understanding and discussing complex human interactions with landscape systems, expressing our concept of the whole landscape system (what I have termed the Total Human Ecosystem), and linking landscape ecology with several of the most powerfully creative ideas in modern science.  相似文献   

12.
The effects of time on the evolution of land use intensity and soil nutrients distribution were studied in a reclamation zone of the Yangtze Estuary. Land use types were grouped into five intensity levels according to the extent of human disturbance. We used the “space for time substitution” method to test the impact of time on changes in land use intensity after reclamation and found that land use levels increased quickly within the first 35 years, then slowed. Soil salinity was relatively higher in aquaculture ponds than that in areas with other types of land cover due to the use of saline water from underground and the sea. Soil organic matter, available phosphorous and nitrate nitrogen were relatively high in agricultural fields, while nitrate nitrogen was highly variable in agricultural fields. The variations of all four soil properties in the built-up zone were much higher than those in the other land use groups. The spatial distribution of different nutrients is the combined effect of time and land use post reclamation. The results will provide a sound basis for future land use planning of newly reclaimed land, and for further studies on ecological consequences of salt marsh reclamation.  相似文献   

13.
The Illinois Geographic Information System was used to compare the soil and landscape attributes of the State with its historic vegetation, current land use, and patterns of land-use change over the past 160 years. Patch structural characteristics among land types in four geographic zones were also compared. The assessment of patch characteristics revealed a highly modified State with most land patches controlled by human influences and relatively few by topographic and hydrologic features. Correlation and regression analyses determined the relationships of land type and abundance within each of 50 general soil associations to properties of the soil associations - typically slope, texture, organic matter, productivity index, and available waterholding capacity. The distribution of the historic vegetation of the State and its current deciduous forests and nonforested wetlands related moderately (r2 0.44) to various landscape attributes. Urban and other highly modified land types were less closely related.  相似文献   

14.
15.
16.
《Scientia Horticulturae》2004,99(2):163-174
Low water use plantings may enhance water conservation in dry landscapes. However, appropriate plant selection is hindered by the dearth of information available on the water needs of different species. A direct method of classification was tested under the hypothesis that relative water use by woody landscape species growing in 3.8 l containers would be representative of the water use of the same species in the landscape. Four species of distinctly different ecological origin (Leucophyllum frutescens, Spiraea vanhouteii, Viburnum tinus, Arctostaphylos densiflora) were chosen in order to obtain a wide range of responses, and their water use was measured in plants growing in 3.8 l containers and compared to that of the same species growing in drainage lysimeters, representative of landscape conditions. Half of the plants were subjected to successive cycles of stress by withholding water after irrigation to container capacity in containers, or applying a fraction of the potential evapotranspiration in lysimeters. The good fit of the regression of average daily water use by lysimeter plants on average daily water use by container plants (R2=0.87,P<0.01) reflects the consistency of relative water use of the four species. Measurement of water use at the end of nursery production may be useful for predicting the relative water use of various species after establishment in the landscape.  相似文献   

17.
Current biodiversity conservation policies have so far had limited success because they are mainly targeted to the scale of individual fields with little concern on different responses of organism groups at larger spatial scales. We investigated the relative impacts of multi-scale factors, including local land use intensity, landscape context and region, on functional groups of beetles (Coleoptera). In 2008, beetles were suction-sampled from 95 managed grasslands in three regions, ranging from Southern to Northern Germany. The results showed that region was the most important factor affecting the abundance of herbivores and the abundance and species composition of predators and decomposers. Herbivores were not affected by landscape context and land use intensity. The species composition of the predator communities changed with land use intensity, but only in interaction with landscape context. Interestingly, decomposer abundance was negatively related to land use intensity in low-diversity landscapes, whereas in high-diversity landscapes the relation was positive, possibly due to enhanced spillover effects in complex landscapes. We conclude that (i) management at multiple scales, from local sites to landscapes and regions, is essential for managing biodiversity, (ii) beetle predators and decomposers are more affected than herbivores, supporting the hypothesis that higher trophic levels are more sensitive to environmental change, and (iii) sustaining biological control and decomposition services in managed grassland needs a diverse landscape, while effects of local land use intensity may depend on landscape context.  相似文献   

18.
Landscape Ecology - Land use legacies of human activities and recent post-abandonment forest expansion have extensively modified numerous forest landscapes throughout the European mountain ranges....  相似文献   

19.

Context

Species distributions are a function of an individual’s ability to disperse to and colonize habitat patches. These processes depend upon landscape configuration and composition.

Objectives

Using Blanchard’s cricket frogs (Acris blanchardi), we assessed which land cover types were predictive of (1) presence at three spatial scales (pond-shed, 500 and 2500 m) and (2) genetic structure. We predicted that forested, urban, and road land covers would negatively affect cricket frogs. We also predicted that agricultural, field, and aquatic land covers would positively affect cricket frogs.

Methods

We surveyed for cricket frogs at 28 sites in southwestern Ohio, USA to determine presence across different habitats and analyze genetic structure among populations. For our first objective, we examined if land use (crop, field, forest, and urban habitat) and landscape features (ponds, streams, and roads) explained presence; for our second objective, we assessed whether these land cover types explained genetic distance between populations.

Results

Land cover did not have a strong influence on cricket frog presence. However, multiple competing models suggested effects of roads, streams, and land use. We found genetic structuring: populations were grouped into five major clusters and nine finer-scale clusters. Highways were predictive of increased genetic distance.

Conclusions

By combining a focal-patch study with landscape genetics, our study suggests that major roads and waterways are key features affecting species distributions in agricultural landscapes. We demonstrate that cricket frogs may respond to landscape features at larger spatial scales, and that presence and movement may be affected by different environmental factors.
  相似文献   

20.
Pollination contributes to both human food security and the reproduction of the majority of wild plant species, but pollinators are facing a rapid decline, a major cause of which is habitat conversion and degradation due to human activities. Urbanization is one of the major types of habitat conversion, but its influence on pollination has been surprisingly mixed, ranging from markedly negative to strongly positive effects. One hypothesis proposed to explain these discrepancies is that pollinator responses to urbanization are highly dependent on the non-urban control habitat, with negative effects when the controls are natural or semi-natural areas but positive when they are intensive agricultural areas. It was also proposed that the pollination response along an agricultural-to-urban gradient is non-linear, with maximum pollination observed at an intermediate level of urbanization due to increased environmental heterogeneity. To test these two hypotheses, we selected a group of 38 sites in a peri-urban area near Paris, France, using a semi-stratified sampling strategy that ensured that all three of the urban, agricultural and semi-natural gradients were maximized. We then estimated pollination using two approaches: we evaluated the pollination success of Lotus corniculatus, a strictly entomogamous self-sterile plant species pollinated mainly by bees, and we measured the species richness of entomogamous and non-entomogamous plants, the difference in their response being expected to relate to the pollination service provided by the overall pollinator community. We found that in our study area, pollination success of L. corniculatus responds positively to the agricultural to urban gradient but not to the semi-natural to urban gradient. The diversity of both entomogamous and non-entomogamous plants is highest at sites surrounded by intermediate proportions of urban and agricultural areas. In addition, high proportions of urban areas have a negative effect on the diversity of non-entomogamous but not entomogamous plant species, suggesting that pollinators are able to partially buffer entomogamous plant species against the negative effect of urban development. Our results show the importance of urban areas in pollination conservation plans and demonstrate that the interaction between different anthropogenic land-use is an important factor for understanding pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号