首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Eleven ophthal-moscopically healthy dark adapted dogs were examined by DC ERG technique with single flash full field illumination starting with near b-wave threshold blue (tests 1-3) and white (tests 4-6) stimuli of different intensity and ending with 30 Hz photopic flicker smuli (test 7) after light adaptation. All animals were anaesthetized using 2 different anaesthetic methods: Anaesthesia I (A I): Induction with thiopentone sodium, continued with halothane and nitrous oxide in oxygen. Anaesthesia II (A II): Praemedication with xylazine hydrochloride followed by anaesthesia with ketamine hydrochloride. A minimum interval of 1 week was kept between all anaesthesias.The a- and b-wave amplitudes and latencies were determined. Statistical analysis of results indicated that the a- and b-waves were elicited by weaker intensities in A II. In Tests 3-6 the a-wave was highly significantly (P < 0.001), higher in amplitude in AII than in A I. Differencies in b-wave amplitudes were not statistically significant (except Test 1). The b-wave latencies were longer in AI in Test 2 (using low intensity blue light). The a-wave latencies were slightly shorter in AII in Test 6 (using high intensity white light).In additional experiments the selective action of the different agents (except N2O) used in AI and AII was studied. Thiopentone alone given to 3 dogs seemed to depress the a-wave selectively.Halothane given separately to 3 dogs lowered both the a- and b-wave amplitudes. Ketamine given with a neuromuscular blocking agent to three dogs resulted in responses almost identical to those in AII.Xylazine with vecuronium given to 4 dogs resulted in responses with slighly depressed a- and b-waves in comparison to ketamine with vecuronium.The results indicate that when developing an animal model for the electrophysiologic study of human retinal dystropies, the actions of different anaesthetics upon the ERG components are of great importante.  相似文献   

2.
Oscillatory potentials (OP) and electroretinograms (ERG) were recorded from clinically normal dogs after 5, 10, 15, 20, 30, 40, 50, and 60 minutes of dark adaptation. At the end of the adaptation period, OP were characterized by 5 distinct positive peaks, O1 through O5, with mean latencies of 14.46, 20.24, 27.38, 35.31, and 44.85 ms, respectively, and with mean amplitudes ranging from 7.20 to 34.84 microV. After 60 minutes of dark adaptation, the ERG had a mean a-wave latency of 12.03 ms and a mean b-wave amplitude of 109.29 microV. Peaks O3 and O4, which partially mask the summit of the b-wave, had mean latencies of 28.66 and 36.83 ms, respectively. The mean amplitude of the b-wave measured to the peak of O3 was 240.06 microV and 230.73 microV when measured to peak O4. Changes in the OP during dark adaptation consisted of significant (P less than 0.05) increases in the latencies of O1, O2, and O3, and significant increases in the amplitudes of O1, O3, O4, and O5. Concurrent ERG changes consisted of significant increases in the amplitudes of the a-wave and b-wave measured from O3 and O4, and significant increases in the latencies of peaks O3 and O4 on the b-wave.  相似文献   

3.
Purpose  To determine the effects of a standardized intravenous dose of an α-2 agonist (Domitor®, Orion Pharma, distributed by Pfizer Animal Health, Exton, PA) on the electroretinogram (ERG) response in normal dogs.
Methods  Twenty-five normal dogs were used to collect ERG responses including a- and b-wave implicit times (IT) and amplitudes (AMP) before and after administration of medetomidine. Dogs were dark adapted for 20 min and ERGs were obtained using the HMsERG (RetVetCorp Inc., Columbia, MO). The QuickRetCheck protocol (Narfström) was employed to provide the following flash intensities: 10 mcd s/m2, 3 cd s/m2, and 10 cd s/m2. ERGs were repeated after 375 µg/m2 of medetomidine intravenously. Statistical analysis of the difference between the responses before and after medetomidine at all flash intensities was performed using a mixed effects model for anova .
Results  The P value for the effect of medetomidine on each of the ERG responses was < 0.01. The estimates of the effect of medetomidine were (+)1.35 ms, (–)23 µV, (+)3.16 ms, and (–)47 µV for the a-wave IT, a-wave AMP, b-wave IT, and the b-wave AMP, respectively.
Conclusions  Medetomidine significantly prolongs the implicit time and lowers the amplitude response of both the a- and b-waves in normal dogs at all flash intensities examined. Clinically, however, medetomidine only minimally affects the retinal responses and is a viable choice for use in dog ERGs.  相似文献   

4.
The cardiopulmonary, anesthetic, and postanesthetic effects of an IV infusion of the hypnotic agent propofol were assessed in 6 Greyhounds and 7 non-Greyhounds. After IM injection of acetylpromazine and atropine, a bolus injection of propofol sufficient to allow endotracheal intubation (mean +/- SEM = 4.0 +/- 0.3 mg/kg of body weight in Greyhounds; 3.2 +/- 0.1 mg/kg in non-Greyhounds) was administered, followed by continuous infusion at a rate of 0.4 mg/kg/min for 60 minutes, during which time dogs breathed 100% oxygen. In 23% of all dogs (3 of 13), apnea developed after initial bolus administration of propofol. Arterial blood pressure was well maintained in all dogs, but heart and respiratory rates were decreased significantly (P less than 0.05) during the infusion in Greyhounds. In Greyhounds, mild respiratory acidosis developed after 45 minutes, whereas arterial carbon dioxide tension was increased at all times after propofol administration in non-Greyhounds. In all dogs, PCV and total plasma proteins were unaffected by propofol. Rectal temperature decreased during treatment. Muscle tremors were observed in approximately 50% of dogs (in 3 of 6 Greyhounds and 3 of 7 non-Greyhounds) during and after infusion of propofol. Non-Greyhounds lifted their heads, assumed sternal recumbency, and stood 10 +/- 1, 15 +/- 3, and 28 +/- 5 minutes, respectively, after the end of the infusion; in Greyhounds, the corresponding times were 36 +/- 4, 43 +/- 6, and 63 +/- 7 minutes.  相似文献   

5.
The effect of premedication with four different intramuscular doses of medetomidine (5.0,10.0, 20.0 and 40.0 μg.kg-1) and a saline placebo were compared in a group of six adult beagle dogs anaesthetised with propofol on five separate occasions. Anaesthesia was induced 30 minutes after premedication and maintained by intravenous injection and continuous infusion of propofol. The effects of medetomidine were reversed with atipamezole 30 minutes after anaesthetic induction. The marked synergistic effects of medetomidine with propofol were demonstrated by a dose related reduction in the induction and infusion requirements for a similar degree of anaesthesia. The effect appeared exponential in nature; lower medetomidine doses produced a disproportionately greater effect.
The maintenance of anaesthesia with propofol following a saline placebo or low doses of medetomidine proved to be difficult. Higher doses of medetomidine required less propofol for induction and infusion and allowed a more stable anaesthesia to be maintained. Propofol produced no statistically significant change in heart rate during infusion. Changes in respiratory rate were markedly group specific. A significant reduction in respiratory rate was seen in dogs given either 5 μg.kg- or 10 μ-g.kg-1 medetomidine. No change was recorded in dogs given 20 /μg.kg-1 medetomidine and a significant increase was seen in dogs given 40 μg.kg-1 medetomidine. Recovery was monitored following the termination of propofol infusion after the reversal of medetomidine using atipamezole at five times the medetomidine dose. Recovery was slower for dogs given lower doses of medetomidine and consequently higher doses of propofol.  相似文献   

6.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

7.
Objective – To describe outcome of treatment with propofol and phenobarbital for status epilepticus (SE) after portosystemic shunt (PSS) attenuation. Case or Series Summary – Three dogs without preceding seizure activity, were diagnosed with a single extrahepatic PSS. Following standard preoperative medical therapy, an ameroid constrictor was placed surgically. Recovery was uneventful until spontaneous SE developed 46–96 hours after surgery. After unsuccessful seizure control with benzodiazepines, dogs were treated with a bolus of propofol followed by a propofol constant rate infusion. Phenobarbital was concurrently administered and supportive care was optimized. All dogs recovered uneventfully over the next 7–9 days. Over the following months phenobarbital was slowly tapered. All dogs have been free from antiepileptic drugs for several months, without recurrence of neurologic signs. New or Unique Information Provided – In this case series, we describe the treatment of 3 dogs with propofol and phenobarbital for refractory SE following attenuation of a single congenital PSS. After weaning of the propofol constant rate infusion, and tapering and discontinuation of phenobarbital over the following months, all dogs experienced a complete recovery. This study provides evidence that use of propofol in combination with phenobarbital may be efficacious for management of SE in dogs after PSS surgery.  相似文献   

8.
Studies were carried out on 40 dogs premedicated with acepromazine (0·05 mg. kg-1) and atropine (0·02 mg. kg-1) to determine the minimum infusion rate of propofol needed to maintain anaesthesia and to compare the quality of the anaesthesia with that produced by halothane/nitrous oxide/oxygen. In 30 dogs anaesthesia was induced with propofol and maintained with a continuous infusion and in the other ten dogs anaesthesia was induced with thiopentone and maintained with the inhalation agents. An infusion rate of 0·4 mg. kg-1 min-1 of propofol produced surgical anaesthesia in dogs breathing oxygen or oxygen-enriched air. Cardiovascular and respiratory effects were similar to those in dogs anaesthetized with halothane/nitrous oxide and with both anaesthetic regimens myocardial oxygen consumption appeared to increase with increasing duration of anaesthesia. A possible familial susceptibility resulting in a more prolonged recovery was revealed and propofol infusion was associated with a 16 per cent incidence of vomiting in the recovery period. It was concluded that in canine anaesthesia the continuous infusion of propofol to maintain anaesthesia in healthy dogs was safe but less satisfactory than the use of halothane/nitrous oxide.  相似文献   

9.
OBJECTIVE: To compare the constant rate infusion (CRI) of vecuronium required to maintain a level of neuromuscular blockade adequate for major surgeries, e.g. thoracotomy or laparotomy, in dogs anaesthetized with a CRI of fentanyl and either propofol, isoflurane or sevoflurane. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Thirteen male beagles (age, 9-22 months; body mass 6.3-11.3 kg). MATERIALS AND METHODS: Dogs were anaesthetized with propofol (24 mg kg(-1) hour(-1) IV CRI; group P), isoflurane (1.3% end-tidal concentration; group I) or sevoflurane (2.3% end-tidal concentration; group S) with fentanyl (5 microg kg(-1) hour(-1) IV, CRI). Sixty to seventy minutes after induction of anaesthesia, vecuronium was administered at a rate of 0.4, 0.3 and 0.2 mg kg(-1) hour(-1) in groups P, I and S respectively. To determine the degree of neuromuscular block, a peripheral nerve was stimulated electrically using the train-of-four (TO4) stimulus pattern. Evoked muscle contractions were evaluated using a neuromuscular monitoring device. Once the TO4 ratio reached 0, the continuous infusion rate was decreased and adjusted to maintain a TO4 count of 1. Continuous infusion was continued for 2 hours. The infusion rate of vecuronium was recorded 20, 40, 60, 80, 100 and 120 minutes after the start of infusion. RESULTS: The mean continuous infusion rates of vecuronium during stable infusion were 0.22 +/- 0.04 (mean +/- SD), 0.10 +/- 0.02 and 0.09 +/- 0.02 mg kg(-1) hour(-1) in groups P, I and S respectively. There were statistically significant differences between the rates in groups P and I and between the rates in groups P and S. Conclusions and clinical relevance In healthy dogs, the recommended maintenance infusion rate of vecuronium is 0.2 mg kg(-1) hour(-1) under CRI propofol-fentanyl anaesthesia and 0.1 mg kg(-1) hour(-1) during CRI fentanyl-isoflurane or sevoflurane anaesthesia.  相似文献   

10.
OBJECTIVE: To investigate the duration of dark-adaptation time required for recovery of electroretinographic responses after fundus photography or indirect ophthalmoscopy in dogs. ANIMALS: 6 dogs. PROCEDURE: Initially, scotopic-intensity series of electroretinograms (ERGs) were recorded after 20 minutes of dark adaptation. The fundus of the left eye of each dog was photographed (n = 10) or examined via indirect ophthalmoscopy for 5 minutes with moderate- (117 candela [cd]/m2) or bright-intensity (1,693 cd/m2) light; ERGs were repeated after a further 20 or 60 minutes of dark adaptation (6 procedures/dog). RESULTS: Following 20 minutes of dark adaptation after fundus photography, the b- and a-wave amplitudes were reduced in response to brighter stimuli, compared with pretest ERGs; after 60 minutes of dark adaptation, ERG amplitudes had recovered. Following 20 minutes of dark adaptation after indirect ophthalmoscopy (moderate-intensity light), significantly lower b-wave amplitudes were recorded in response to 2 of the brighter flash stimuli, compared with pretest ERGs; after 60 minutes of dark adaptation, ERG amplitudes had recovered. Following 20 minutes of dark adaptation after indirect ophthalmoscopy (bright-intensity light), all ERG amplitudes were significantly decreased and implicit times were significantly decreased at several flash intensities, compared with pretest ERGs; after 60 minutes of dark adaptation, ERG amplitudes and implicit times had returned to initial values, except for b-wave amplitudes recorded in response to dimmer stimuli. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that at least 60 minutes of dark adaptation should be allowed before ERGs are performed in dogs after fundus photography or indirect ophthalmoscopy.  相似文献   

11.
The purpose of the present study was to establish normal electroretinogram (ERG) parameters using 56 normal eyes of four dog breeds common in Thailand: poodle, Labrador retriever, Thai ridgeback, and Thai Bangkaew. Standard ERG findings were bilaterally recorded using a handheld multi-species ERG unit with an ERG-jet lens electrode for 28 dogs under preanesthesia with diazepam, anesthesia with propofol, and anesthesia maintenance with isoflurane. There were significant differences in the mean values of ERG amplitudes and implicit times among the four dog breeds (p < 0.05) except for the b-wave implicit time of the photopic 30 Hz flicker response with 3 cd.s/m2 (p = 0.610). Out of the four breeds, Thai Bangkaew had the longest implicit time (p < 0.001) of scotopic low intensity responses, b-wave of scotopic standard intensity responses (3 cd.s/m2), a-wave of the higher intensity response (10 cd.s/m2), and a-wave of the photopic single flash response (3 cd.s/m2). For the b/a ratio, only the ratio of the Cone response was significantly different among the different breeds. In this summary, normal ERG parameters for four dog breeds were reported. Data from the investigation supported the hypothesis that determination of breed-specific limits of normality for ERG responses is necessary for individual clinics and laboratories.  相似文献   

12.
The main purpose of this study was to demonstrate that the use of epidural anaesthesia-analgesia reduces the amount of propofol necessary to maintain surgical anaesthesia in dogs during ovariohysterectomy. The study was carried out on 28 bitches undergoing ovariohysterectomy with general anaesthesia using an intravenous infusion of propofol. Dogs were allocated to one of two groups. Group 1 received systemic buprenorphine together with epidural analgesia using lidocaine and buprenophine, and in Group 2 systemic buprenorphine only was given. The mean propofol infusion rate was significantly lower in dogs with epidural analgesia (P < 0.0001). In addition, the mean endotracheal extubation time was significantly longer in dogs with epidural analgesia (P < 0.0001). No significant differences were detected in any of the physiological parameters measured.  相似文献   

13.
ObjectiveTo establish the correlation between the bispectral index (BIS) and different rates of infusion of propofol in dogs.Study designProspective experimental trial.AnimalsEight adult dogs weighing 6–20 kg.MethodsEight animals underwent three treatments at intervals of 20 days. Propofol was used for induction of anesthesia (10 mg kg−1 IV), followed by a continuous rate infusion (CRI) at 0.2 mg kg−1 minute−1 (P2), 0.4 mg kg−1 minute−1 (P4) or 0.8 mg kg−1 minute−1 (P8) for 55 minutes. The BIS values were measured at 10, 20, 30, 40, and 50 minutes (T10, T20, T30, T40, and T50, respectively) after the CRI of propofol was started. Numeric data were submitted to analysis of variance followed by Tukey test (p < 0.05).ResultsThe BIS differed significantly among groups at T40, when P8 was lower than P2 and P4. At T50, P8 was lower than P2. The electromyographic activity (EMG) in P2 and P4 was higher than P8 at T40 and T50.ConclusionsAn increase in propofol infusion rates decreases the BIS values and EMG.  相似文献   

14.
The optimal dark adaptation time of electroretinograms (ERG''s) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG''s at seven different dark adaptation times at an intensity of 2.5 cd·s/m2 was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occured over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 ± 18.47 µV. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 ± 17.79 µV. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG''s, should be at least 20 min in conscious Miniature Schnauzer dogs.  相似文献   

15.
OBJECTIVE: To develop a method to electrophysiologically differentiate heterozygous-carrier Abyssinian-crossbred cats from homozygous-affected Abyssinian-crossbred cats before clinical onset of inherited rod-cone retinal degeneration. ANIMALS: 14 back-crossed Abyssinian-crossbred cats of unknown genotype (homozygous or heterozygous) for inherited rod-cone retinal degeneration, 24 age-matched mixed-breed control cats, 6 age-matched heterozygous Abyssinian-crossbred cats, and 6 homozygous Abyssinian cats. PROCEDURE: Electroretinography (ERG) of heterozygous and homozygous cats revealed differences, especially for scotopic recordings. Frequent ophthalmoscopy and ERG (2 to 5 times; at intervals of 3 to 6 months) of back-crossed cats were performed. Amplitudes and implicit times were analyzed by use of a graphic representation of results. Ratios for amplitudes of the b-waves to amplitudes of the a-waves (b-wave:a-wave) were compared. RESULTS: 8 back-crossed cats had decreased a-wave amplitudes, increased b-wave implicit times, and abnormal ERG waveforms. Values for the b-wave:a-wave for the highest scotopic light intensity were significantly higher for those same 8 cats. CONCLUSIONS AND CLINICAL RELEVANCE: The 8 back-crossed Abyssinian-crossbred cats with abnormal results developed fundus changes over time consistent with disease. A graphic representation of ERG results can be used to differentiate between genotypes prior to funduscopic changes. Values for the b-wave:a-wave ratio provide confirmation. These ERG analyses may be applied clinically in the diagnosis of retinal degenerations in various species. IMPACT FOR HUMAN MEDICINE: Cats with hereditary rod-cone degeneration may be a useful model for comparative studies in relation to retinitis pigmentosa in humans. Similar evaluations of ERG results could possibly be used for humans with suspected generalized retinal degeneration.  相似文献   

16.
OBJECTIVE: The purpose of this study was to determine the effects of cataract stage, lens-induced uveitis and cataract removal on the electroretinogram (ERG) of dogs with cataract. ANIMALS STUDIED: Fifty-seven dogs diagnosed with unilateral or bilateral cataract whose ERG was recorded at Rakuno Gakuen University Teaching Animal Hospital from 2001 to 2004. PROCEDURES: Four responses were recorded during the ERG: rod ERG, standard combined ERG, single-flash cone ERG and 30-Hz flicker ERG. Cataracts were divided into four stages: incipient, immature, mature and hypermature, and with or without lens induced uveitis (LIU). Noncataractous eyes of dogs with unilateral cataract were used as the control. We compared ERG amplitude, implicit time, and the b- to a-wave amplitude ratio of cataractous vs. noncataractous eyes, preoperative vs. postoperative cataractous eyes, and cataractous eyes with and without LIU. RESULTS: No significant difference was found in ERG amplitude between incipient, immature and hypermature cataractous eyes, while in mature cataractous eyes decreased amplitude was confirmed in all responses compared with control eyes. However, no significant difference in b/a ratio was found at any stage of cataract. In postoperative eyes, increased amplitude was recorded in all responses compared to preoperative values. In eyes with LIU a decreased amplitude in the rod ERG and b-wave of standard combined ERG was recorded and, furthermore, a significant decline was confirmed in b/a ratio. CONCLUSION: ERG values were influenced by cataract stage and LIU. LIU was associated with a reduction in the b/a ratio.  相似文献   

17.
Studies were carried out on 40 dogs premedicated with acepromazine (0.05 mg kg-1), and atropine (0.02 mg kg-1) to determine the minimum infusion rate of propofol needed to maintain anaesthesia and to compare the quality of the anaesthesia with that produced by halothane/nitrous oxide/oxygen. An infusion rate of 0.4 mg kg-1 min-1 of propofol produced surgical anaesthesia in dogs breathing oxygen or oxygen-enriched air. Cardiovascular and respiratory effects were similar to those in dogs anaesthetized with halothane/nitrous oxide and with both anaesthetic regimes myocardial oxygen consumption appeared to increase with increasing duration of anaesthesia. Propofol infusion was associated with a 16 per cent incidence of vomiting in the recovery period. Maintenance of anaesthesia in healthy dogs by the continuous infusion of propofol appeared to be safe but less satisfactory than the use of halothane/nitrous oxide.  相似文献   

18.
ObjectiveTo determine the effects of graded doses of propofol on cardiovascular parameters and intraocular pressures (IOP) in normal dogs.Study designProspective, randomized, modified Latin square, cross-over experimental study.AnimalsEleven adult random-source dogs weighing 20.2 ± 5.7 kg.MethodsThere were three treatment groups: propofol 8 mg kg?1 intravenous (IV) until loss of jaw tone (Group P), propofol until loss of jaw tone +20% (Group P20), and propofol until loss of jaw tone +50% (Group P50). Atracurium 0.1 mg kg?1 IV was administered in all treatments immediately after the propofol. All dogs received the three treatments in a randomized order, with at least a one week interval between treatments. Direct arterial blood pressure and IOP by applanation tonometry were obtained at baseline, after 5 minutes of pre-oxygenation (before induction), before, and after intubation. Blood gas samples were obtained at baseline, after pre-oxygenation, and before intubation.ResultsThere was no significant difference in IOP readings at any time point among groups. The IOP was significantly higher before intubation versus before induction in all three groups. There was a significantly smaller change in systolic, mean (MAP), and diastolic (DAP) arterial pressures in the P50 group compared with the P group after intubation. There was a significantly smaller change in MAP and DAP in the P50 group compared with the P20 group after intubation. The increase in CO2 from before induction to before intubation was significantly greater in the P50 group than in the P or P20 groups.Conclusions and clinical relevanceGraded doses of propofol did not affect the increase in IOP observed with propofol induction in normal dogs. Higher doses of propofol are of no apparent additional benefit in animals who cannot tolerate an abrupt increase in IOP but may be of benefit in dogs who cannot tolerate an abrupt increase in blood pressure accompanying orotracheal intubation.  相似文献   

19.
Propofol by infusion was administered to 6 adult beagle dogs on 2 separate occasions. The dogs received either no premedication or 20 μg/kg im medetomidine 15 min before induction of anaesthesia, with propofol given at 7 mg/kg/min to permit tracheal intubation. After tracheal intubation the infusion rate was maintained for 120 min at 0.4 mg/kg/min in the non-premedicated, and 0.2 mg/kg/min in the premedicated dogs. The latter group received atipamezole 50 μg/kg im immediately at the end of the infusion. After induction of anaesthesia, a 7F balloon catheter designed for thermal dilution measurement of cardiac output was inserted via the right jugular vein. Blood propofol concentrations were measured by HPLC with fluorescence detection and kinetic variables calculated using non-compartmental moment analysis. The induction dose of propofol was 7.00 (sem 0.55) mg/kg in non-premedicated compared with 3.09 (0.25) mg/kg in premedicated dogs. There were differences in systemic clearance and mean residence time (MRTiv); 47.5 (6.2) ml/kg/min vs 29.0 (4.4) ml/kg/min (non-premedicated vs premedicated) and 132.3 (5.2) min vs 152.4 (3.1) min (P < 0.02 and P < 0.001, respectively). Cardiorespiratory effects were similar in the 2 groups although heart rate was lower in the premedicated dogs. Venous admixture was high (20–45%) but similar in the 2 groups.  相似文献   

20.
The effects of propofol infusion were compared with propofol/isoflurane anaesthesia in six beagles premedicated with 10 microg/kg intramuscular (i.m.) dexmedetomidine. The suitability of a cold pressor test (CPT) as a stress stimulus in dogs was also studied. Each dog received isoflurane (end tidal 1.0%, induction with propofol) with and without CPT; propofol (200 microg/kg/min, induction with propofol) with and without CPT; premedication alone with and without CPT in a randomized block study in six separate sessions. Heart rate and arterial blood pressures and gases were monitored. Plasma catecholamine, beta-endorphin and cortisol concentrations were measured. Recovery profile was observed. Blood pressures stayed within normal reference range but the dogs were bradycardic (mean heart rate < 70 bpm). PaCO2 concentration during anaesthesia was higher in the propofol group (mean > 57 mmHg) when compared with isoflurane (mean < 52 mmHg). Recovery times were longer with propofol than when compared with the other treatments. The mean extubation times were 8 +/- 3.4 and 23 +/- 6.3 min after propofol/isoflurane and propofol anaesthesia, respectively. The endocrine stress response was similar in all treatments except for lower adrenaline level after propofol infusion at the end of the recovery period. Cold pressor test produced variable responses and was not a reliable stress stimulus in the present study. Propofol/isoflurane anaesthesia was considered more useful than propofol infusion because of milder degree of respiratory depression and faster recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号