首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tufted puffin (Fratercula cirrhata) is a generalist seabird that breeds throughout the North Pacific and eats more than 75 different prey species. Using puffins as samplers, we characterized the geographic variability in pelagic food webs across the subarctic North Pacific from the composition of ~10,000 tufted puffin meals (~56,000 prey items) collected at 35 colonies in the Gulf of Alaska (GoA) and Aleutian Archipelago. Cluster analysis of diet species composition suggested three distinct forage fish communities: (i) in the northern GoA, multiple age‐classes of coastal and shelf residents such as capelin, sand lance and herring dominated the food web, (ii) in the western GoA to eastern Aleutians, the shelf community was dominated by transient age‐0 walleye pollock, and (iii) in the western Aleutians, shelf‐edge and mesopelagic forage species such as squid, lanternfish, and Atka mackerel were prevalent. Geographic patterns of abundance of capelin and sand lance in tufted puffin diets were corroborated by independent research fisheries and diets of piscivorous fish, indicating that puffin diets reflect the local abundance of forage species, not just selection of favored species. Generalized additive models showed that habitat characteristics predict, in a non‐linear fashion, forage species distribution and abundance across two large marine ecosystems. We conclude that major biogeographic patterns in forage fish distribution follow gradients in key habitat features, and puffin diets reflect those patterns.  相似文献   

2.
Climatic drivers of the size and body condition of forage fish in the North Pacific are poorly known. We hypothesized that length and condition of forage fish in the Gulf of Alaska (GoA) vary in relation to ocean temperature on multiple scales. To test this hypothesis, we analyzed morphometric data for capelin (Mallotus catervarius) and Pacific sand lance (PSL; Ammodytes personatus) sampled by a seabird (Cerorhinca monocerata) in two regions of the GoA, 1993–2016. Based on previous studies, we predicted that capelin length and body condition (Fulton's K) would be negatively related to the Pacific Decadal Oscillation (PDO) and sea surface temperature (SST), whereas PSL length and condition would be positively related. Interannual variation in length and body condition was evaluated relative to seasonal values of ocean climate using regression. Forage fish length and condition varied interannually, between sampling regions, and were dependent on the size/age class of the fish sampled. As predicted, length and body condition of capelin (mostly age 1+) were negatively related to the PDO and SST. Relationships with ocean climate for PSL varied by size/age class: positive for putative age‐0 fish and negative for putative age‐1+ fish. We conclude that our hypothesis was supported for capelin and partially supported for PSL. This study demonstrates that ocean climate determines key morphometric characteristics of forage fish that may relate to interannual variation in the energetic value of prey, and provides an example of how seabirds can be used to obtain specimens for evaluations of potential prey quality.  相似文献   

3.
The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.  相似文献   

4.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

5.
Oceanographic and predation processes are important modulators of fish larvae survival and mortality. This study addresses the hypothesis that immature Norwegian spring‐spawning herring (Clupea harengus), when abundant in the Barents Sea, determine the capelin reproduction success through consumption of Barents Sea capelin (Mallotus villosus) larvae. Combining a hydrodynamic model and particle‐tracking individual‐based model, a realistic spatio‐temporal overlap between capelin larvae and predatory immature herring was modelled for the summer seasons of 2001–2003. Capelin larvae originating from western spawning grounds became widely dispersed during the summer season, whereas those originating from eastern spawning grounds experienced a rapid drift into the southeastern Barents Sea. Herring caused a 3% mortality of the capelin larvae population in 2001 and a 16% mortality in 2003, but the effect of predation from herring on capelin larvae was negligible in 2002. Despite a strong capelin larvae cohort and a virtual absence of predatory herring, the recruitment from the capelin 2002 year class was relatively poor from a long‐term perspective. We show that the choice of capelin spawning grounds has a major impact on the subsequent capelin larvae drift patterns, constituting an important modulator of the capelin larvae survival. Variation in drift patterns during the summer season is likely to expose the capelin larvae to a wide range of hazards, including predation from young cod, sandeel and other predators. Such alternative predators might thus have contributed to the poor capelin recruitment during 2001–2003, leading to the collapse of the capelin stock in the subsequent years.  相似文献   

6.
Annual catch of the western sand lance Ammodytes japonicus in the eastern Seto Inland Sea, Japan, has shown a decreasing trend since the 1990s. To examine whether food shortage was the main cause for the catch decrease, we investigated the condition factor of the age‐0 fish at the beginning of the estivation period (late July) in Harima‐Nada, eastern Seto Inland Sea, for 10 years from 2008 to 2017. The mean abundance of copepods as food for the age‐0 fish during the fish growth period (from February to June) around the estivation area was also determined. The condition factor showed a significant decrease, and values for 2011 and later years were mostly lower than the known minimum threshold (4.2) for maturation. In the recent 4 years from 2013 to 2016, the mean copepod abundance was much lower than values for the other years. The condition factor showed a significant positive correlation with the copepod abundance. These results indicate that decline of western sand lance catch after 1990 was caused mainly by food shortage.  相似文献   

7.
Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non‐spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non‐spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre‐spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub‐areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.  相似文献   

8.
Effective ecosystem‐based management requires a comprehensive understanding of the functional links in the system. In many marine systems, forage species constitute a critical link between primary production and upper trophic level marine predators. As top predators, seabirds can be indicators of the forage species they consume and the ocean processes that influence these populations. We analyzed the diet and breeding success for the years 1994, 2003, 2005, and 2007–2012 of the Brandt's cormorant (Phalacrocorax penicillatus), a piscivorous diving seabird, breeding in central California, to evaluate the extent to which cormorant diet composition relates to prey availability, and how diet composition relates to breeding success and ocean conditions. Cormorant diet was primarily composed of young‐of‐the‐year (YOY) northern anchovy (Engraulis mordax), YOY rockfish (Sebastes spp.), and several species of small flatfish (order Pleuronectiformes). YOY rockfish consumption was positively related to their abundance as measured in a late spring pelagic midwater trawl survey. Northern anchovy appeared to be the most important prey as its consumption was positively related to cormorant breeding success. More northern anchovy were consumed in years where warm‐water conditions prevailed in the fall season before cormorant breeding. Thus, warm ocean conditions in the fall appear to be an important contributing factor in producing a strong year‐class of northern anchovy in central California and consequently a strong‐year class of Brandt's cormorant on the Farallon Islands.  相似文献   

9.
We propose that ocean conditions of the Near Islands in the western Aleutian Arc mimic those of the shallow continental shelf of the eastern Bering Sea to the extent that the marine community, including assemblages of forage fishes and their avian predators, has distinctly coastal characteristics. In contrast, marine avifauna and their prey at neighbouring Buldir Island are distinctly oceanic. For example, at the Near Islands, the ratio of thick-billed to common murres, Vria lomvia and U. aalge, is low and black-legged kittiwakes, Rissa tridactyla, but not red-legged kittiwakes, R. brevirostris, nest there. Diets of murres and kittiwakes are dominated by sand lance, Ammodytes hexapterus, an abundant coastal species. At Buldir Island, thick-billed murres greatly outnumber common murres, red-legged kittiwakes and black-legged kittiwakes are both abundant, and diets of the birds consist primarily of oceanic squid and lantern-fish (Myctophidae). This mesoscale difference in food webs is apparently a consequence of the local physiography. A broad escarpment on the Near physiographic block creates a comparatively expansive, shallow, shelflike habitat around the Near Islands, where a pelagic community typical of coastal regions flourishes. Buldir Island is the only emergent feature of the Buldir physiographic block, with little shallow water surrounding it and, apparently, little opportunity for other than oceanic species to exist. Patterns in the distribution of fishes, and thus of sea birds, throughout the Aleutian Islands might be largely explained by the presence or absence of shelf-like habitat and the relationship between physical environments and food webs. In the larger context of fisheries oceanography, this model for the Aleutian Islands improves our ability to interpret physical and biological heterogeneity in the ocean and its relationship to regional community dynamics and trends in the abundance and productivity of individual species at higher trophic levels.  相似文献   

10.
Proximate composition of some north-eastern Pacific forage fish species   总被引:3,自引:0,他引:3  
To understand the relative dietary value of forage fish as prey in the Bering Sea and Gulf of Alaska, whole organisms of 13 species were analysed for proximate composition (protein, oil, ash and moisture content). Eulachon ( Thaleichthys pacificus ) were high in oil (total lipid) (16.8% to 21.4%) and low in moisture (64.6% to 70.8%). Oil in capelin ( Mallotus villosus ) ranged from 2.1% to 14.0%. Juveniles of walleye pollock ( Theragra chalcogramma ), Atka mackerel ( Pleurogrammus monopterygius ), Pacific herring ( Clupea pallasii ), and prowfish ( Zaprora silenus ) had low oil contents (< 1.8%) and high moisture contents (> 80.3%). Rankings of median proximate values illustrate the similarities. Surf smelt ( Hypomesus pretiosus ), rainbow smelt ( Osmerus mordax ), pricklebacks ( Lumpenus spp.), Atka mackerel, Pacific sand lance ( Ammodytes hexapterus ) and Pacific sandfish ( Trichodon trichodon ) ranked high in median protein content (> 15.4%). Median ash content for all species ranged from 0.6% to 3.3%. Total wet mass caloric content (kcal g–1) was calculated for the four main species and a linear model was developed for caloric content as a function of moisture. The linear models (caloric content = b0 + b1 × moisture) were Pacific sand lance and Pacific sandfish (b0 = 7.82, b1 = – 0.09); eulachon (b0 = 7.97, b1 = – 0.08); and capelin (b0 = 9.70, b1 = – 0.11).  相似文献   

11.
Acoustic trawl surveys were conducted in 2000 and 2001 in two troughs located off the eastern coast of Kodiak Island in the Gulf of Alaska as part of a multiyear, multidisciplinary experiment to examine the influence of environmental conditions on the spatial distribution of adult and juvenile walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Continuous underway sea surface temperature samples and water column profiles collected in 2000 and 2001 showed the presence of a sharp shelf‐break front in Chiniak Trough and a mid‐trough front in Barnabas Trough. At distances <22 km from shore, the water column was well mixed, whereas a well‐defined mixed layer was present beyond approximately 22 km from shore. Satellite drifter tracks in Barnabas Trough entered along the upstream edge of the trough and appeared to follow the frontal boundary across the middle portion of the trough. A storm in 2001 weakened stratification and cooled surface water temperature by 1.6–2.1°C. Wind mixing associated with the storm event mixed subsurface chlorophyll a to the surface and enhanced nutrients in the surface waters. The storm event revealed spatial partitioning of summer production in Barnabas Trough, with production concentrated in regions inside the mid‐trough front. In contrast, post‐storm summer production was distributed throughout Chiniak Trough. The spatial distribution of walleye pollock and capelin differed and appeared to be related to differences in habitat characteristics. Acoustic survey data identified four acoustic sign types: age‐1 pollock, adult pollock, capelin, capelin–age‐0 pollock mix. The spatial distribution of these four sign types appears to be influenced by the oceanographic and topographic features of the two troughs. Adult pollock were broadly distributed throughout Chiniak Trough, whereas adult pollock were aggregated on the coastal side of the frontal system in Barnabas Trough. In 2000, capelin occurred with age‐0 pollock. In Chiniak Trough, capelin were most abundant along steep topographic gradients at the edges of the trough and in a deep region near Cape Chiniak, whereas the capelin–age‐0 mix (2000) or capelin (2001) concentrations were observed in slope water intrusions over the outer shelf in Barnabas Trough. Results suggest that habitat selection of walleye pollock and capelin are controlled by different processes. Capelin distributions appear to be limited by oceanographic conditions while other factors appear to be more important for pollock.  相似文献   

12.
Investigations on the marine feeding of Atlantic salmon (Salmo salar L.) in the Northwest Atlantic are limited compared with the Northeast Atlantic. Climate‐induced changes to food webs in Atlantic salmon feeding areas have been noted, alongside increased mortality despite a cessation of most marine fisheries. As forage efficiency may be hampering survival, it was important to address this knowledge gap. Atlantic salmon were sampled at three sites on the West Greenland coast (Sisimiut, Nuuk and Qaqortoq) between 2009 and 2011. Gut content and stable isotope analyses were combined to assess spatial and temporal differences in feeding. Capelin (Mallotus villosus) dominated the diet at Nuuk and Qaqortoq, whereas boreoatlantic armhook squid (Gonatus fabricii) was the dominant prey at Sisimiut. Hyperiid amphipods (Themisto spp.) and sand lance (Ammodytes spp.) were also important. Significant differences were found among sites for both gut contents and stable isotope analyses, with fewer differences evident temporally. Dietary differences were also evident across larger scales, with little overlap demonstrated with Northeast Atlantic diets and the emergence of boreoatlantic armhook squid as an important prey item over time. Atlantic salmon diets are frequently anchored on one or two prey items, on which they appear to specialize, but they will diversify to consume other available pelagic prey. Thus, Atlantic salmon are an opportunistic, generalist predator within the pelagic food web. The variability evident in diet suggests that the limited data available are insufficient to appropriately understand potential vulnerabilities that the species may have to ecosystem changes, and suggest further research is needed.  相似文献   

13.
14.
This paper provides an exploratory analysis aiming to seek whether the colour of environmental noise theory could help in understanding the intriguing reproductive strategy of Atlantic bluefin tuna (BFT). A frequency‐based approach based on spectral exponents, fβ with β < 0, is chosen and applied on 10 biogeographical provinces covering the North Atlantic. The major BFT spawning area, i.e. the Mediterranean Sea, was the only one to display a pink power spectrum, whereas open ocean regions displayed more reddened fluctuations, i.e. greater variance at low frequencies. Environmental noise in the Mediterranean could, thus, offer more favourable characteristics on the long‐term than the open ocean. The implications of these findings are discussed in regards to medium and long (possibly evolutionary) time scales.  相似文献   

15.
A two‐dimensional individual‐based fish movement model coupled with fish bioenergetics was developed to simulate the observed migration and growth of Japanese sardine (Sardinops melanostictus) in the western North Pacific. In the model, derived from the observed ocean–environmental data as the driving force, fish movement was adapted as a kinesis behavior. The model successfully simulated the observed transport patterns during the egg and larval stages and the northward migrations during the juvenile stage in 2005, 2006 and 2007. The model results showed that both temperature during the larval stage in the Kuroshio Extension and the prey availability during the early juvenile stage in the Kuroshio–Oyashio transitional area are important factors for growth of Japanese sardine. In autumn, the observed juvenile sardine were mainly distributed in the subarctic water region off the Kuril Islands, which is an area (158–165°E, 43–47°N) with a high chlorophyll‐a (Chl‐a) concentration. The model reproduced the fish distribution, which has a high density in this region. The high Chl‐a concentration area in autumn may contribute to increasing the survival rate of Japanese sardine by cascading up the food chain, from the high primary production, and is an important habitat for recruitment success of Japanese sardine.  相似文献   

16.
  1. The Pacific sand lance (Ammodytes personatus) is a key forage species for many commercially important fish (e.g. salmon and groundfish), marine birds, and whales found in nearshore coastal waters of British Columbia, Canada.
  2. Sand lance lack a swim bladder and have a requirement for low-silt, medium-coarse sandy sea-bed habitat for burying. Little information is available describing the distribution of burying habitat, partly because there are no commercial fisheries for A. personatus in British Columbia.
  3. This information is required by habitat and wildlife managers to identify and protect uncommon patches of burying habitats from detrimental activities, including dredging, infilling, and oil spills.
  4. In this study, habitat distribution results from five suitability modelling algorithms were evaluated: maximum entropy, generalized linear model, generalized additive model, random forest, and an ensemble model of the latter three.
  5. The maximum entropy model had the highest performance score (area under the receiver operator characteristic curve was 0.78) and was selected as the model that most accurately identified the presence of suitable A. personatus burying habitat.
  6. Model results indicate that suitable burying habitat is primarily influenced by derived sea-bed substrate, distance to estuary, distance to sand-gravel beaches, and bottom sea temperature.
  7. Overall, the spatial modelling identified only 105 km2 of highly suitable sand lance burying habitat, or 2.6% of the study area (0–150 m), primarily in Haro Strait, along the east coast of Vancouver Island, and in northern regions of the strait near Cortes, Savary, and Harwood islands.
  8. Identification of this uncommon and patchy burying habitat will contribute to the ongoing conservation of an important coastal prey species.
  相似文献   

17.
We explored the seasonal potential fishing grounds of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific using maximum entropy (MaxEnt) models fitted with squid fishery data as response and environmental factors from remotely sensed [sea surface temperature (SST), sea surface height (SSH), eddy kinetic energy (EKE), wind stress curl (WSC) and numerical model‐derived sea surface salinity (SSS)] covariates. The potential squid fishing grounds from January–February (winter) and June–July (summer) 2001–2004 were simulated separately and covered the near‐coast (winter) and offshore (summer) forage areas off the Kuroshio–Oyashio transition and subarctic frontal zones. The oceanographic conditions differed between regions and were regulated by the inherent seasonal variability and prevailing basin dynamics. The seasonal and spatial extents of potential squid fishing grounds were largely explained by SST (7–17°C in the winter and 11–18°C in the summer) and SSS (33.8–34.8 in the winter and 33.7–34.3 in the summer). These ocean properties are water mass tracers and define the boundaries of the North Pacific hydrographic provinces. Mesoscale variability in the upper ocean inferred from SSH and EKE were also influential to squid potential fishing grounds and are presumably linked to the augmented primary productivity from nutrient enhancement and entrainment of passive plankton. WSC, however, has the least model contribution to squid potential fishing habitat relative to the other environmental factors examined. Findings of this work underpin the importance of SST and SSS as robust predictors of the seasonal squid potential fishing grounds in the western and central North Pacific and highlight MaxEnt's potential for operational fishery application.  相似文献   

18.
At small spatial scales basking sharks (Cetorhinus maximus) forage selectively on zooplankton along thermal fronts, but the factors influencing broader scale patterns in their abundance and distribution remain largely unknown. Using long‐term sightings data collected off southwest Britain between 1988 and 2001, we show that the number of basking sharks recorded was highly correlated with abiotic factors, principally sea surface temperature (SST) and the lagged effect of SST in the previous month, but only very weakly to zooplankton density. This suggests that the changes in number of basking sharks recorded over large spatio‐temporal scales are more closely related to the availability of climate‐driven thermal resources than prey availability, whereas the converse is supported by previous studies at local scales. Taken together, these results imply scale‐dependent behavioural responses in basking sharks, with small‐scale foraging movements linked by broad scale responses to temperature variation.  相似文献   

19.
Our examination of the neon flying squid (Ommastrephes bartramii) winter–spring cohort catch per unit effort (CPUE, an index of stock) revealed significant positive correlations with the interannual variations of observed chlorophyll‐a (Chl‐a) concentration and autumn–winter mixed layer depth (MLD) in the winter–spring feeding grounds of paralarvae and juveniles (130–170°E, 20–27°N). These correlations suggest the importance of integrated bottom‐up effects by the autumn–winter MLD for the neon flying squid stocks. However, the influence of autumn–winter MLD interannual variation in the forage availability for paralarvae and juveniles, i.e., particulate organic matter and zooplankton, has still been unclear. In this study, we use the lower trophic ecosystem model NEMURO, which uses the physical environmental data from the ocean reanalysis dataset obtained by the four‐dimensional variational (4DVAR) data assimilation method. The model‐based investigation enables us to clarify how the autumn–winter MLD controls the particulate organic matter and zooplankton abundance in the feeding grounds. Further, our investigation of the autumn–winter MLD interannual variation demonstrates that the stronger autumn wind in the feeding grounds develops a deeper mixed layer. Therefore, the deep mixed layer entrains nutrient‐rich water and enhances photosynthesis, which results in good feeding conditions for paralarvae and juveniles. Our results underline that the wind system interannual variation has critical roles on the winter–spring cohort of the neon flying squid stock.  相似文献   

20.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号