首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the impact of oceanographic variability on Pacific bluefin tuna (Thunnus orientalis: PBF) distributions in the California Current system using remotely sensed environmental data, and fishery‐dependent data from multiple fisheries in a habitat‐modeling framework. We examined the effects of local oceanic conditions (sea surface temperature, surface chlorophyll, sea surface height, eddy kinetic energy), as well as large‐scale oceanographic phenomena, such as El Niño, on PBF availability to commercial and recreational fishing fleets. Results from generalized additive models showed that warmer temperatures of around 17–21°C with low surface chlorophyll concentrations (<0.5 mg/m3) increased probability of occurrence of PBF in the Commercial Passenger Fishing Vessel and purse seine fisheries. These associations were particularly evident during a recent marine heatwave (the “Blob”). In contrast, PBF were most likely to be encountered on drift gillnet gear in somewhat cooler waters (13–18°C), with moderate chlorophyll concentrations (0.5–1.0 mg/m3). This discrepancy was likely a result of differing spatiotemporal distribution of fishing effort among fleets, as well as the different vertical depths fished by each gear, demonstrating the importance of understanding selectivity when building correlative habitat models. In the future, monitoring and understanding environmentally driven changes in the availability of PBF to commercial and recreational fisheries can contribute to the implementation of ecosystem approaches to fishery management.  相似文献   

2.
Bottom trawl surveys provide fishery‐independent data on relative abundance and life history parameters for a wide range of marine taxa. Survey data are used to assess species distribution, biological interactions, and ecosystem structure and to manage marine resources. Not all bottom types or oceanographic conditions accommodate this survey method. We applied National Ocean Service hydrographic smooth sheets to evaluate physical attributes associated with habitat available to surveys. Random forests were used to evaluate the relative influence of benthic terrain and oceanographic predictors in determining accessibility to bottom trawl gear. We examined the marginal importance of each predictor, quantified the response gradient, and applied piecewise regression to determine threshold breakpoint values. Thresholds were used to develop predictive maps and distinguish untrawlable habitat at the scale of discrete towpaths and survey stations. Untrawlable habitat was associated with increased complexity in terrain, roughness, slope, surface curvature, substrate coarseness, current, and aspect. Maps of critical thresholds suggest different variables constrain the probability of a successful trawl in the nearshore, shelf, and continental slope. Overlay analysis of the model projection demonstrates the utility of archived smooth sheet data and identifies areas where higher resolution data might improve results. The model and maps produced in this analysis might be used to identify habitats available to and impacted by commercial trawl fisheries, inform the relative availability of various species and habitat types to bottom trawl surveys, evaluate bias in assessment indices and ecosystem metrics derived from survey data, and advance habitat‐specific biomass estimates.  相似文献   

3.
Defining the oceanic habitats of migratory marine species is important for both single species and ecosystem‐based fisheries management, particularly when the distribution of these habitats vary temporally. This can be achieved using species distribution models that include physical environmental predictors. In the present study, species distribution models that describe the seasonal habitats of two pelagic fish (dolphinfish, Coryphaena hippurus and yellowtail kingfish, Seriola lalandi), are developed using 19 yr of presence‐only data from a recreational angler‐based catch‐and‐release fishing programme. A Poisson point process model within a generalized additive modelling framework was used to determine the species distributions off the east coast of Australia as a function of several oceanographic covariates. This modelling framework uses presence‐only data to determine the intensity of fish (fish km?2), rather than a probability of fish presence. Sea surface temperature (SST), sea level anomaly, SST frontal index and eddy kinetic energy were significant environmental predictors for both dolphinfish and kingfish distributions. Models for both species indicate a greater fish intensity off the east Australian coast during summer and autumn in response to the regional oceanography, namely shelf incursions by the East Australian Current. This study provides a framework for using presence‐only recreational fisheries data to create species distribution models that can contribute to the future dynamic spatial management of pelagic fisheries.  相似文献   

4.
Time/area closures have been widely used in fisheries management to prevent overfishing and the destruction of marine biodiversity. To a lesser degree, such spatio‐temporal management measures have been used to reduce by‐catch of finfish or protected species. However, as ecosystem‐based management approaches are employed and more fisheries are managed through multispecies, multiobjective models, the management of by‐catch will likely become increasingly important. The elimination of by‐catch has become a primary goal of the fishing policies of many countries. It is particularly relevant in the United States, as the deadline for setting annual catch limits (ACLs) in all fisheries passes in 2011. This will result in a dramatic expansion of the number of catch and by‐catch quotas. Such catch measures may result in the early closure of otherwise sustainable fisheries when by‐catch quotas are exceeded. To prevent such closures and the consequent economic hardship to fishers and the economy, it is imperative that managers be given the tools necessary to reduce by‐catch and improve fishing selectivity. Targeted spatio‐temporal fishery closures are one solution open to managers. Here, we examine how the spatio‐temporal and oceanographic characteristics of by‐catch may be used by managers to design fishery closures, and place these methods within a decision tree to assist managers to identify appropriate management measures. We argue that the current movement towards marine spatial planning (MSP) presents an important impetus to examine how we manage fisheries spatially, and we offer a first step towards the objective participation of fisheries in the MSP process.  相似文献   

5.
A performance assessment was conducted of regional fisheries management organizations’ (RFMOs’) bycatch governance, one element of an ecosystem approach to fisheries management. Obtaining a mean score of 25%, with a 64% CV, collectively the RFMOs have large governance deficits. Individually, there has been mixed progress, with some RFMOs having made substantial progress for some governance elements. There has been nominal progress in gradually transitioning to ecosystem‐based fisheries management: controls largely do not account for broad or multispecies effects of fishing, and cross‐sectoral marine spatial planning is limited. Regional observers collect half of minimum information needed to assess the efficacy of bycatch measures. Over two‐thirds of RFMO‐managed fisheries lack regional observer coverage. International exchange of observers occurs in one‐third of programmes. There is no open access to research‐grade regional observer data. Ecological risk assessments focus on effects of bycatch removals on vulnerable species groups and effects of fishing on vulnerable benthic marine ecosystems. RFMOs largely do not assess or manage cryptic, generally undetectable sources of fishing mortality. Binding measures address about one‐third of bycatch problems. Eighty per cent of measures lack explicit performance standards against which to assess efficacy. Measures are piecemeal, developed without considering potential conflicts across vulnerable groups. RFMOs employ 60% of surveillance methods required to assess compliance. A lack of transparency and limited reporting of inspection effort, identified infractions, enforcement actions and outcomes further limits the ability to assess compliance. Augmented harmonization could help to fill identified deficits.  相似文献   

6.
7.
Fishery ecosystems are complex and influenced by various drivers that operate and interact at different levels and over multiple scales. Here, we propose a holistic methodology to determine the key mechanisms of fisheries, trophodynamics, and environmental drivers of marine ecosystems, using a multilevel model fitted to data on global catch, effort, trophic level, primary production, and temperature for 130 ecosystems from 1950 to 2012. The model describes the spatial‐temporal dynamics of world fisheries very well with a pseudo R2 = 0.75 and estimates the effects of key drivers of fishery production. The results demonstrate the integrative operation of bottom‐up and top‐down regulated trophic interactions at the global level and great variations in their relative importance among different types of ecosystem. The estimation of key drivers’ effects on marine ecosystems provides practical mechanisms for informed ecosystem‐based fisheries management to achieve the sustainable objectives that are consistent with the needs of specific fisheries.  相似文献   

8.
Historically, the fishing community (e.g., fishermen, resource managers) has used remotely sensed products either in the form of direct Automatic Picture Transmission (APT) reception on a ship or FAX charts transmitted from land-based stations. Both these products have severe limitations within the context of near real-time support/management of an operational fishery. Moreover, relatively little use of geographical information systems (GIS) technologies has been made by either the fishing industry, fishery resource managers, or by the general oceanographic community. This latter omission is unfortunate because GIS has the potential to overcome two long-standing problems associated with satellite-directed fisheries: 1) the absence of information due to clouds; and 2) the general lack of support for nonpelagic fisheries. This report gives the background, motivation, and essential design elements for use of a combined remote sensing/geographical information system (RS/GIS) in an operational fishery and illustrates how a combined RS/GIS approach can be used to mitigate some of the traditional limitations in satellite-directed fisheries. Finally, an attempt is made to provide some possible directions this new technology may take during the 1990s.  相似文献   

9.
Fishing impacts and the degradation or loss of habitat structure   总被引:9,自引:0,他引:9  
The wider effects of fishing on marine ecosystems have become the focus of growing concern among scientists, fisheries managers and the fishing industry. The present review examines the role of habitat structure and habitat heterogeneity in marine ecosystems, and the effects of fishing (i.e. trawling and dredging) on these two components of habitat complexity. Three examples from New Zealand and Australia are considered, where available evidence suggests that fishing has been associated with the degradation or loss of habitat structure through the removal of large epibenthic organisms, with concomitant effects on fish species which occupy these habitats. With ever-increasing demands on fish-stocks and the need for sustainable use of fisheries resources, new approaches to fisheries management are needed. Fisheries management needs to address the sustainability of fish-stocks while minimizing the direct and indirect impacts of fishing on other components of the ecosystem. Two long-term management tools for mitigating degradation or loss of habitat structure while maintaining healthy sustainable fisheries which are increasingly considered by fisheries scientists and managers are: (1) protective habitat management, which involves the designation of protected marine and coastal areas which are afforded some level of protection from fishing; and (2) habitat restoration, whereby important habitat and ecological functions are restored following the loss of habitat and/or resources. Nevertheless, the protection of marine and coastal areas, and habitat restoration should not be seen as solutions replacing conventional management approaches, but need to be components of an integrated programme of coastal zone and fisheries management. A number of recent international fisheries agreements have specifically identified the need to provide for habitat protection and restoration to ensure long-term sustainability of fisheries. The protection and restoration of habitat are also common components of fisheries management programs under national fisheries law and policy.  相似文献   

10.
Striped marlin (Kajikia audax) is an epipelagic species distributed in tropical and temperate waters of the Pacific Ocean. In the central and eastern Pacific Ocean, it is captured principally in commercial longline fisheries, and in small artisanal fisheries, however, it is also taken throughout its range in this region as an incidental catch of the tuna purse‐seine fishery. Previous studies suggest that overexploitation and climate change may reduce abundance and cause changes in spatial distributions of marine species. The main objective of this study was to describe the habitat preferences of striped marlin and the changes in its distribution in response to environmental factors. Habitat modeling was conducted using a maximum entropy model. Operational level data for 2003–2014, collected by scientific observers aboard large purse seine vessels, were compiled by the Inter‐American Tropical Tuna Commission and were matched with detailed (4 km) oceanographic data from satellites and general circulation models. Results showed that the spatial distribution of habitat was dynamic, with seasonal shifts between coastal (winter) and oceanic (summer) waters. We found that the preferred habitat is mainly in coastal waters with warm sea surface temperatures and a high chlorophyll‐a concentration.  相似文献   

11.
Inland fisheries can be diverse, local and highly seasonal. This complexity creates challenges for monitoring, and consequently, many inland fish stocks have few data and cannot be assessed using methods typically applied to industrial marine fisheries. In such situations, there may be a role for methods recently developed for assessment of data‐poor fish stocks. Herein, three established data‐poor assessment tools from marine systems are demonstrated to highlight their value to inland fisheries management. A case study application uses archived length, catch and catch‐per‐unit‐effort data to characterise the ecological status of an important recreational brown trout stock in an Irish lake. This case study is of specific use to management of freshwater sport fisheries, but the broader purpose of the paper was to provide a crossover between marine and inland fisheries science, and to highlight accessible data‐poor assessment approaches that may be applicable in diverse inland systems.  相似文献   

12.
Fisheries have had major negative impacts on marine ecosystems, and effective fisheries management and governance are needed to achieve sustainable fisheries, biodiversity conservation goals and thus good ecosystem status. To date, the IndiSeas programme (Indicators for the Seas) has focussed on assessing the ecological impacts of fishing at the ecosystem scale using ecological indicators. Here, we explore fisheries ‘Management Effectiveness’ and ‘Governance Quality’ and relate this to ecosystem health and status. We developed a dedicated expert survey, focused at the ecosystem level, with a series of questions addressing aspects of management and governance, from an ecosystem‐based perspective, using objective and evidence‐based criteria. The survey was completed by ecosystem experts (managers and scientists) and results analysed using ranking and multivariate methods. Results were further examined for selected ecosystems, using expert knowledge, to explore the overall findings in greater depth. Higher scores for ‘Management Effectiveness’ and ‘Governance Quality’ were significantly and positively related to ecosystems with better ecological status. Key factors that point to success in delivering fisheries and conservation objectives were as follows: the use of reference points for management, frequent review of stock assessments, whether Illegal, Unreported and Unregulated (IUU) catches were being accounted for and addressed, and the inclusion of stakeholders. Additionally, we found that the implementation of a long‐term management plan, including economic and social dimensions of fisheries in exploited ecosystems, was a key factor in successful, sustainable fisheries management. Our results support the thesis that good ecosystem‐based management and governance, sustainable fisheries and healthy ecosystems go together.  相似文献   

13.
Fishery management measures to reduce interactions between fisheries and endangered or threatened species have typically relied on static time‐area closures. While these efforts have reduced interactions, they can be costly and inefficient for managing highly migratory species such as sea turtles. The NOAA TurtleWatch product was created in 2006 as a tool to reduce the rates of interactions of loggerhead sea turtles with shallow‐set longline gear deployed by the Hawaii‐based pelagic longline fishery targeting swordfish. TurtleWatch provides information on loggerhead habitat and can be used by managers and industry to make dynamic management decisions to potentially reduce incidentally capturing turtles during fishing operations. TurtleWatch is expanded here to include information on endangered leatherback turtles to help reduce incidental capture rates in the central North Pacific. Fishery‐dependent data were combined with fishing effort, bycatch and satellite tracking data of leatherbacks to characterize sea surface temperature (SST) relationships that identify habitat or interaction ‘hotspots’. Analysis of SST identified two zones, centered at 17.2° and 22.9°C, occupied by leatherbacks on fishing grounds of the Hawaii‐based swordfish fishery. This new information was used to expand the TurtleWatch product to provide managers and industry near real‐time habitat information for both loggerheads and leatherbacks. The updated TurtleWatch product provides a tool for dynamic management of the Hawaii‐based shallow‐set fishery to aid in the bycatch reduction of both species. Updating the management strategy to dynamically adapt to shifts in multi‐species habitat use through time is a step towards an ecosystem‐based approach to fisheries management in pelagic ecosystems.  相似文献   

14.
Fisheries dynamics can be thought of as the reciprocal relationship between an exploited population and the fishers and/or managers determining the exploitation patterns. Sustainable production of protein of these coupled human‐natural systems requires an understanding of their dynamics. Here, we characterized the fishery dynamics for 173 fisheries from around the globe by applying general additive models to estimated fishing mortality and spawning biomass from the RAM Legacy Database. GAMs specified to mimic production models and more flexible GAMs were applied. We show observed dynamics do not always match assumptions made in management using “classical” fisheries models, and the suitability of these assumptions varies significantly according to large marine ecosystem, habitat, variability in recruitment, maximum weight of a species and minimum observed stock biomass. These results identify circumstances in which simple models may be useful for management. However, adding flexibility to classical models often did not substantially improve performance, which suggests in many cases considering only biomass and removals will not be sufficient to model fishery dynamics. Knowledge of the suitability of common assumptions in management should be used in selecting modelling frameworks, setting management targets, testing management strategies and developing tools to manage data‐limited fisheries. Effectively balancing expectations of future protein production from capture fisheries and risk of undesirable outcomes (e.g., “fisheries collapse”) depends on understanding how well we can expect to predict future dynamics of a fishery using current management paradigms.  相似文献   

15.
卫星遥感在海洋监测中的应用   总被引:1,自引:0,他引:1  
卫星遥感具有覆盖面积大、快速、全天时和全天候的工作能力。通过对卫星遥感所获得的海洋水温、水深、气象因素等数据进行分析,可以用于指导渔业生产、海洋灾害预警、海洋生态污染及灾害的监测,有着广泛的应用前景。  相似文献   

16.
海洋遥感技术在海洋渔业及相关领域的应用与研究   总被引:3,自引:0,他引:3  
自20世纪70年代始,科研人员将遥感技术应用于海洋渔业及其相关领域的研究,将各类卫星遥感所获得的数据对海洋水温、海流、光、盐度、溶解氧、气象因素、水深、海底地形、饵料生物等进行了由定性到定量的分析,并将所得结果用于指导渔业生产、促进渔业研究、预警海洋灾害等方面,所起作用非传统调查方法能为。因此,遥感技术在海洋渔业及其相关领域正在发挥着越来越大的作用,并预示着广阔的应用前景和巨大的应用潜力。本文综述了遥感技术在海洋生态系统相关要素和渔场变动、大型动植物分布、海况监测、海洋生态污染及灾害监测等方面应用与研究进展,并对海洋遥感信息在我国海洋渔业领域的应用研究前景进行了分析。  相似文献   

17.
  • 1. Maintaining ecological processes that underpin the functioning of marine ecosystems requires planning and management of marine resources at an appropriate spatial scale.
  • 2. The Great Barrier Reef World Heritage Area (GBR) is the world's largest World Heritage Area (approximately 348 000 km2) and second largest marine protected area. It is difficult to inform the planning and management of marine ecosystems at that scale because of the high cost associated with collecting data. To address this and to inform the management of coastal (approximately 15 m below mean sea level) habitats at the scale of the GBR, this study determined the presence and distribution of seagrass by generating a Geographic Information System (GIS)‐based habitat suitability model.
  • 3. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. The analysis showed at the scale of the entire coastal GBR that the main drivers of seagrass presence were tidal range and relative wave exposure. Outputs of the model include probabilistic GIS‐surfaces of seagrass habitat suitability in two seasons and at a planning unit of cell size 2 km×2 km.
  • 4. The habitat suitability maps developed in this study extend along the entire GBR coast, and can inform the management of coastal seagrasses at an ecosystem scale. The predictive modelling approach addresses the problems associated with delineating habitats at the scale appropriate for the management of ecosystems and the cost of collecting field data. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

18.
Stakeholders increasingly expect ecosystem assessments as part of advice on fisheries management. Quantitative models to support fisheries decision‐making may be either strategic (‘big picture’, direction‐setting and contextual) or tactical (focused on management actions on short timescales), with some strategic models informing the development of tactical models. We describe and review ‘Models of Intermediate Complexity for Ecosystem assessments’ (MICE) that have a tactical focus, including use as ecosystem assessment tools. MICE are context‐ and question‐driven and limit complexity by restricting the focus to those components of the ecosystem needed to address the main effects of the management question under consideration. Stakeholder participation and dialogue is an integral part of this process. MICE estimate parameters through fitting to data, use statistical diagnostic tools to evaluate model performance and account for a broad range of uncertainties. These models therefore address many of the impediments to greater use of ecosystem models in strategic and particularly tactical decision‐making for marine resource management and conservation. MICE are capable of producing outputs that could be used for tactical decision‐making, but our summary of existing models suggests this has not occurred in any meaningful way to date. We use a model of the pelagic ecosystem in the Coral Sea and a linked catchment and ocean model of the Gulf of Carpentaria, Australia, to illustrate how MICE can be constructed. We summarize the major advantages of the approach, indicate opportunities for the development of further applications and identify the major challenges to broad adoption of the approach.  相似文献   

19.
20.
Krill fisheries in Antarctica have concentrated their effort on the Western Antarctic Peninsula and Scotia Arc (WAP) in the last decades, following a steady increase in annual catch. Short‐term shifts in habitat exploration may have occurred and may be the cause for the increasing catch. Habitat use and effort in krill fisheries in the WAP during summer between 2012/2013 and 2016/2017, inclusive, were tested to determine how habitat use and effort reflected in the catch. Increasing trends in fishing tow duration and depth of fishing in deeper and colder waters were found. No association of the catch with the habitat explored was found, but catch was higher in years when the variability of explored habitat was lower. The relevance of these findings for fisheries management and conservation of Antarctic marine ecosystems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号