首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined recruitment and average weight-at-age time series for Pacific herring ( Clupea pallasi ) populations from the Bering Sea and north-east Pacific Ocean to determine similarities. Statistical correlation and multivariate clustering methods indicated Pacific herring populations form large-scale groups. Large year classes occur synchronously among several Pacific herring populations. Multivariate cluster analyses of recruitment and weight-at-age data indicated that Bering Sea herring populations are distinct from north-east Pacific Ocean populations. Within the NE Pacific Ocean, there appear to be three groups of herring populations: a British Columbia group, a south-east Alaska coastal group, and an outer Gulf of Alaska group. Jackknife and randomization tests indicate these groups are robust and not the result of random chance. Deviations from observed herring population groups were examined for indications of anthropogenic perturbations. The Prince William Sound herring populations did not show any strong deviations corresponding to the oil spill of 1989. There might not yet be enough data since the spill to detect changes in the recruitment or weight-at-age data since that time, particularly if oil spill effects were concentrated on the early life history stages.  相似文献   

2.
Previous studies have shown that Pacific herring populations in the Bering Sea and north-east Pacific Ocean can be grouped based on similar recruitment time series. The scale of these groups suggests large-scale influence on recruitment fluctuations from the environment. Recruitment time series from 14 populations were analysed to determine links to various environmental variables and to develop recruitment forecasting models using a Ricker-type environmentally dependent spawner–recruit model. The environmental variables used for this investigation included monthly time series of the following: southern oscillation index, North Pacific pressure index, sea surface temperatures, air temperatures, coastal upwelling indices, Bering Sea wind, Bering Sea ice cover, and Bering Sea bottom temperatures. Exploratory correlation analysis was used for focusing the time period examined for each environmental variable. Candidate models for forecasting herring recruitment were selected by the ordinary and recent cross-validation prediction errors. Results indicated that forecasting models using air and sea surface temperature data lagged to the year of spawning generally produced the best forecasting models. Multiple environmental variables showed marked improvements in prediction over single-environmental-variable models.  相似文献   

3.
Five years of field, laboratory, and numerical modelling studies demonstrated ecosystem‐level mechanisms influencing the mortality of juvenile pink salmon and Pacific herring. Both species are prey for other fishes, seabirds, and marine mammals in Prince William Sound. We identified critical time‐space linkages between the juvenile stages of pink salmon and herring rearing in shallow‐water nursery areas and seasonally varying ocean state, the availability of appropriate zooplankton forage, and the kinds and numbers of predators. These relationships defined unique habitat dependencies for juveniles whose survivals were strongly linked to growth rates, energy reserves, and seasonal trophic sheltering from predators. We found that juvenile herring were subject to substantial starvation losses during a winter period of plankton diminishment, and that predation on juvenile pink salmon was closely linked to the availability of alternative prey for fish and bird predators. Our collaborative study further revealed that juvenile pink salmon and age‐0 herring exploit very different portions of the annual production cycle. Juvenile pink salmon targeted the cool‐water, early spring plankton bloom dominated by diatoms and large calanoid copepods, whereas young‐of‐the‐year juvenile herring were dependent on warmer conditions occurring later in the postbloom summer and fall when zooplankton was composed of smaller calanoids and a diversity of other taxa. The synopsis of our studies presented in this volume speaks to contemporary issues facing investigators of fish ecosystems, including juvenile fishes, and offers new insight into problems of bottom‐up and top‐down control. In aggregate, our results point to the importance of seeking mechanistic rather than correlative understandings of complex natural systems.  相似文献   

4.
Rates of growth, protein synthesis and oxygen consumption were measured in herring larvae, Clupea harengus, in order to estimate the contribution that protein synthesis makes to oxygen consumption during rapid growth at 8°C. Protein synthesis rates were determined in larvae 9 to 17 d after hatching. Larvae were bathed in 3H phenylalanine for several hours and the free pool and protein-bound phenylalanine specific radioactivities were determined.Fractional rates of protein synthesis increased 5 to 11 fold with feeding after a period of fasting. Efficiencies of retention of synthesized protein were approximately 50% during rapid growth. Rapid growth in herring larvae thus appears to be characterized by moderate levels of protein turnover similar to those obtained for larger fish. Increases in growth rate occurred without changes in RNA concentration, i.e., the larvae increased the efficiency of RNA rapidly. Oxygen consumption rates were not correlated with growth rates. Protein synthesis was estimated to account for 79% of the oxygen consumption, and energy costs of protein synthesis were high, i.e., about 98 mmole O2 g–1 protein synthesized.  相似文献   

5.
Fish stocks vary in abundance. The causes behind the fluctuations may be difficult to determine, especially ones caused by natural fluctuations, but long‐term data series may provide indications of the mechanisms. Assessments show that the recruitment to the Norwegian spring‐spawning herring (Clupea harengus, Clupeidae) has remained low since 2004, a year which produced the last really rich year‐class. Long time‐series of estimated recruitment and mean winter temperature in the ocean showed a significant positive correlation for the period 1921–2004. Here, we show that this positive correlation did not continue from 2005 onwards as the winter temperature increased to high levels while herring recruitment decreased and has remained low. The density of zooplankton in the drift route of the herring larvae dropped significantly after 2004, and their centre of gravity shifted northwards. There may currently be heavy predation on the larvae by Atlanic mackerel (Scomber scombrus, Scombridae), and top‐down regulation is suggested to hamper successful recruitment. Our analysis indicates that the presence of food and overlap with high food concentrations are likely important regulators of survival in herring larvae. The findings may be important for future management and planning of fisheries of this stock because recruitment failure may continue if temperature remains high and food abundance remains low.  相似文献   

6.
7.
Pacific herring, Clupea pallasi Valenciennes, collected from three areas of coastal British Columbia were screened for Ichthyophonus by histological examination. The infectivity of Ichthyophonus to juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), was examined in laboratory studies. Ichthyophonus was detected in a total of 82 of 356 herring from all three areas. Prevalence in 2000 and 2001 ranged from 10.5 to 52.5% and was significantly lower in more northern (Hecate Strait) samples. Ichthyophonus was detected by histological examination in chinook salmon following oral or intraperitoneal (i.p.) exposure to homogenates of infected herring tissue. Infections in Yukon stock chinook salmon were occasionally associated with mortality and with inflammation in all tissues examined. Infections were detected significantly more frequently in the caecal mesenteries of i.p.-infected compared with oral-infected chinook salmon. The distribution and prevalence of Ichthyophonus isolates among diverse host species may assist in stock identification and in an improved understanding of trophic interactions.  相似文献   

8.
Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem‐mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010–2050. Gradual increase in temperature has a positive impact on the long‐term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s. Under the combined effects of long‐term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long‐term fish dynamics can be an informative tool to derive expectations of the potential long‐term impact of alternative future scenarios of exploitation and climate change.  相似文献   

9.
Variation in growth and body size during critical life history stages can have important implications for life history schedules and survivorship. For Pacific herring (Clupea pallasii), there is still debate as to whether juvenile body size is governed by density‐dependent or ‐independent processes and few have evaluated whether the relative importance of either process shifts over the course of early ontogeny. We used a unique data set consisting of seasonal measurements of abundance, body size, and spatial distribution within a semi‐enclosed basin of Puget Sound (Washington State, U.S.A.) to measure the relative importance of temperature and cohort abundance on body size at distinct time periods, and evaluated whether density‐dependent habitat shifts might be responsible for density‐dependent growth. Over the 9 years of sampling (2001–2010) midsummer body size was positively related to temperatures experienced during the egg/yolk sac and larval stages and unrelated to cohort abundance. However, fall body size was negatively correlated with abundance and uncorrelated with both midsummer body size and temperature, indicating a shift from density‐independent to density‐dependent control over the course of the growing season. Thus, density‐dependent effects may supplant density‐independent effects exhibited early in herring life history. Our data on spatial distributions of herring and their zooplankton prey indicate that density‐dependent reductions in growth may be explained by density‐dependent habitat shifts that lead to reduce overlap of herring with zooplankton. Evidence of density‐dependent growth in marine fish populations is often attributed to exploitative competition, but our results suggest that these patterns may partly be mediated by density‐dependent distribution expansions in to prey‐poor habitat.  相似文献   

10.
Understanding the recruitment variability of the Atlantic herring North Sea stock remains a key objective of stock assessment and management. Although many efforts have been undertaken linking climatic and stock dynamic factors to herring recruitment, no major attempt has been made to estimate recruitment levels before the 20th century. Here, we present a novel annually resolved, absolutely dated herring recruitment reconstruction, derived from stable carbon isotope geochemistry (δ13C), from ocean quahog shells from the Fladen Ground (northern North Sea). Our age model is based on a growth increment chronology obtained from fourteen shells. Ten of these were micromilled at annual resolution for δ13C analysis. Our results indicate that the anthropogenically driven relative depletion of 13C, the oceanic Suess effect (oSE), became evident in the northern North Sea in the 1850s. We calculated a regression line between the oSE‐detrended δ13C results (δ13C?) and diatom abundance in the North Sea, the regression being mediated by the effect of phytoplankton on the δ13C of the ambient dissolved inorganic carbon. We used this regression to build an equation mediated by a nutritional link to reconstruct herring recruitment using δ13C?. The reconstruction suggests that there were five extended episodes of low‐recruitment levels before the 20th century. These results are supported by measured recruitment estimates and historical fish catch and export documentation. This work demonstrates that molluscan sclerochronological records can contribute to the investigation of ecological baselines and ecosystem functioning impacted by anthropogenic activity with implications for conservation and stock management.  相似文献   

11.
The Icelandic summer‐spawning herring (Clupea harengus) stock overwinters in large, dense schools like other herring stocks. In the winter of 2012/2013 around 300 thousand tonnes, or ~70% of the spawning stock, overwintered in a fjord west of Iceland. The inner part of the fjord, where the herring was located, is separated from the outer part with a natural barrier and a built‐up road with a 210 m long bridge. This creates strong tidal currents under the bridge. On 14 December and again on 1 February mass mortalities of herring took place in this location, and the sea floor and the shores were covered with dead herring. Fieldwork, including camera and video recordings on the shore and on a small boat, was conducted 3 and 4 days after the incidents. Results from this indicated that a total of 55 thousand tonnes had died during these two incidents, an amount nearly equal to the total catch from the stock that year. Measurements of environmental conditions in the days following the incidents showed that the oxygen saturation was generally 20%–40% but was as low as 15% (1.1 ml/L). The most likely explanation for the mortalities was oxygen depletion resulting from respiration of the large herring biomass, limited atmospheric‐water gas exchange due to calm and cold weather prior to both incidents and sea ice on part of the fjord, and limited renewal of water coming in and out via tidal currents. Aerobic decomposition of dead herring came additionally in the latter incident.  相似文献   

12.
Physical and biological variables affecting juvenile Pacific herring (Clupea pallasi) in Prince William Sound (PWS) from 1995 to 1998 were investigated as part of a multifaceted study of recruitment, the Sound Ecosystem Assessment (SEA) program. Though more herring larvae were retained in eastern PWS bays, ages‐0 and ‐1 herring used bays throughout PWS as nursery areas. Water transported into PWS from the Gulf of Alaska (GOA) contributed oceanic prey species to neritic habitats. Consequently, variations in local food availability resulted in different diets and growth rates of herring among bays. Summer food availability and possible interspecific competition for food in nursery areas affected the autumn nutritional status and juvenile whole body energy content (WBEC), which differed among bays. The WBEC of age‐0 herring in autumn was related to over‐winter survival. The limited amount of food consumption in winter was not sufficient to meet metabolic needs. The smallest age‐0 fish were most at risk of starvation in winter. Autumn WBEC of herring and winter water temperature were used to model over‐winter mortality of age‐0 herring. Differences in feeding and energetics among nursery areas indicated that habitat quality and age‐0 survival were varied among areas and years. These conditions were measured by temperature, zooplankton abundance, size of juvenile herring, diet energy, energy source (GOA vs. neritic zooplankton), WBEC, and within‐bay competition.  相似文献   

13.
A long-term (1907–98) virtual population analysis (VPA) was made for Norwegian spring-spawning herring (NSSH), which is a huge pelagic fish stock in the north-east Atlantic. It shows that this herring stock has had large fluctuations during the last century; these fluctuations have mainly been determined by variations in the temperature of the inflowing water masses to the region. The spawning stock biomass (SSB) increased from a rather low level in the early years of this century and reached a high level of around 14 million tons by 1930. The spawning stock biomass then decreased to a level of around 10 million tons by 1940, but increased again to a record high level of 16 million tons by 1945. The stock then started to decrease and during the next 20-year period fell to a level of less than 50 000 tons by the late 1960s. Through the 1970s and 1980s, the stock slowly recovered and after the recruitment of strong year classes in 1983 and 1990–1992 the stock recovered to a spawning stock biomass of about 10 million tons. The long-term fluctuation in spawning stock biomass is caused by variations in the survival of recruits. It is found that the long-term changes in spawning stock abundance are highly correlated with the long-term variations in the mean annual temperature of the inflowing Atlantic water masses (through the Kola section) into the north-east Atlantic region. The recruitment is positively correlated with the average temperature in the Kola section in the winter months, January–April, which indicates that environmental factors govern the large-scale fluctuations in production for this herring stock.  相似文献   

14.
Fish recruitment is the result of the integration of small‐scale processes affecting larval survival over a season and large oceanic areas. A hydrodynamic model was used to explore and model these physical–biological interaction mechanisms and then to perform the integration from individual to population scales in order to provide recruitment predictions for fisheries management. This method was applied to the case of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). The main data available to investigate survival mechanisms were past growth (otolith) records of larvae and juveniles sampled at sea. The drift history of these individuals was reconstructed by a backtracking procedure using hydrodynamic simulations. The relationships between (real) growth variation and variations in physical parameters (estimated by hydrodynamic simulations) were explored along the individual trajectories obtained. These relationships were then used to build and adjust individual‐based growth and survival models. Thousands of virtual buoys were released in the hydrodynamic model in order to reproduce the space–time spawning dynamics. Along the buoy trajectories (representative of sub‐cohorts), the biophysical model was run to simulate growth and survival as a function of the environment encountered. The survival rate after 3 months of drift was estimated for each sub‐cohort. The sum of all these survival rates over the season constituted an annual recruitment index. This index was validated over a series of recruitment estimations. The modelling choices, model results and the potential use of the recruitment index for fisheries management are discussed.  相似文献   

15.
A larval survey is used in the annual assessment as an index of the spawning stock size of Norwegian spring spawning herring (Clupea harengus). To test how inter‐annual fluctuations in circulation pattern, survey design and execution of the survey affected the larval abundance estimate we conducted simulated surveys using a model framework with idealized assumptions to model larval drift and sampled larvae using several realistic survey scenarios. The results suggest that inter‐annual variations in circulation pattern alone can have a profound effect on the perception of larvae abundance and that the direction of the survey (north to south versus south to north) can have a significant effect on the estimated abundance, particularly if hatching occurs over a short period of time. Additionally, disruptions to a continuous survey schedule also have an effect and, as such, sampling strategies in case of disruption to the survey are proposed.  相似文献   

16.
Juvenile walleye pollock of the Japanese Pacific population were collected from the Funka Bay [spawning ground; 16–64 mm fork length (FL)] in spring and the Doto area (nursery ground; 70–146 mm FL) in summer. Hatch dates were estimated by subtracting the number of otolith daily increments from sampling dates, and their early growth was back‐calculated using otolith radius–somatic length relationships. Interannual change of the hatching period was observed during 2000–02, and the peaks ranged from mid‐February in 2000 to early‐April in 2002. In 2000, when a strong year class occurred, early life history of the surviving juveniles could be characterized by early hatching and slower growth in the larval stage (<22 mm length). Higher growth rate in 2001 and 2002 did not always lead to good survival and recruitment success. Even though their growth was slow in 2000, the larvae hatched early in the season had larger body size on a given date than faster‐growing larvae hatched in later season in 2001 and 2002. Bigger individuals at a certain moment may have advantage for survival. The delay of hatching period may result in higher size‐selective mortality, and as a necessary consequence, back‐calculated growth in 2001 and 2002 could shift towards higher growth rate, although abundance of such a year class would be at the lower level. Variability in spawning period, early growth and their interaction might have a strong relation to larval survival through cumulative predation pressure or ontogenetic changes in food availability.  相似文献   

17.
Juvenile salmon traveling northwestward to the Pacific Ocean from the Strait of Georgia migrate through and take residence in both Johnstone and Queen Charlotte Straits. Johnstone Strait is a narrow and deep passage that is tidally mixed daily, resulting in a nearly isothermal water column, surface to the bottom (approximately 250 m). The trophic gauntlet hypothesis (McKinnell, Curchitser, Groot, Kaeriyama, & Trudel, 2014 ) suggests that Johnstone Strait provides a poor growth environment for fish required to transit this area during their migration, due to the oceanographic conditions found there. Using insulin‐like growth factor‐1 (IGF1), a hormone used to assess short‐term growth (within 5–7 days) in fishes, growth was measured in individual juvenile salmon from five species in the Northern Strait of Georgia, Johnstone Strait, Queen Charlotte Strait, and Queen Charlotte Sound in the summer of 2012, 2013, and 2014. All five juvenile salmon species had significantly lower IGF1 concentration in both Johnstone and Queen Charlotte Straits as compared to the Northern Strait of Georgia. These results are consistent with some aspects of the tropic gauntlet hypothesis as growth of juvenile salmon in both Johnstone and Queen Charlotte Straits were significantly lower than found in the Northern Strait of Georgia across all salmon species and all years. In addition, these results demonstrate the utility of growth indices for assessing the effects of environmental variation on juvenile salmon in the presence of a strong ecological driver.  相似文献   

18.
Procedures for a viral replication in excised fin tissue (VREFT) assay were adapted to Pacific herring, Clupea pallasii, and optimized both to reduce processing time and to provide the greatest resolution between naïve herring and those previously exposed to viral haemorrhagic septicaemia virus (VHSV), Genogroup IVa. The optimized procedures included removal of the left pectoral fin from a euthanized fish, inoculation of the fin with >105 plaque‐forming units (PFU) mL?1 VHSV for 1 h, rinsing the fin in fresh medium six times to remove unadsorbed virions, incubation of the fin in fresh medium for 4 days and enumeration of the viral titre in a sample of the incubation medium by plaque assay. The optimized VREFT assay was effective at identifying the prior exposure history of laboratory‐reared Pacific herring to VHSV. The geometric mean VREFT value was significantly greater (P < 0.01) among naïve herring (1.2 × 103 PFU mL?1) than among groups that survived exposure to VHSV (1.0–2.9 × 102 PFU mL?1); additionally, the proportion of cultures with no detectable virus was significantly greater (P = 0.0002) among fish that survived exposure to VHSV (39–47%) than among naïve fish (3.3%). The optimized VREFT assay demonstrates promise for identifying VHSV exposure history and forecasting disease potential in populations of wild Pacific herring.  相似文献   

19.
A qualitative understanding of the long‐term variation in the population dynamics of Yellow Sea (YS) herring is particularly important for clarifying the evolutionary processes and driving mechanisms of the YS large marine ecosystem. Unfortunately, because of a lack of long‐term, continuous, and simultaneous monitoring data, the specific driving processes and mechanisms of climate effects on the population dynamics of YS herring remain largely unknown. In response to this scientific issue, we preliminarily propose the idea of reconstructing long‐term changes in YS herring abundance over the past 590 years (AD 1417–2004) based on historical documents and attempt to explore the impacts of climate on the population. Our results show that YS herring abundance maintained at a relatively high level from AD 1417 to 1870 (during the Little Ice Age); in contrast, the population declined significantly from AD 1870 to 2004 at different rates. In addition, we also found that there were strong relationships between the population abundance of YS herring and the Pacific decadal oscillation (PDO) and drought/flood cycles. We suggest that the fluctuations in YS herring abundance may be influenced by ocean–climatic circulation shifts throughout the North Pacific, especially the PDO.  相似文献   

20.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号