首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
试验旨在探究高乳清粉熟化软颗粒仔猪教槽料的制备工艺中的主要工艺参数对饲料成品效果的影响,并优化加工工艺参数。通过单因素试验探究熟化软颗粒教槽料加工过程中的水分添加量(12%~24%)、出口温度(115~135℃)、螺杆转速(180~380 r/min)对饲料硬度、凝胶成型效果的影响,确定适宜工艺参数范围。在此基础上,以水分的添加量(14%、16%、18%、20%、22%)、出口温度(116、120、124、128、132℃)和螺杆转速(220、250、280、310、340r/min)为试验因素,先采用单因素试验,初步确定各因素适宜范围,再利用正交试验得出最佳工艺参数,并以饲料中的淀粉糊化度为评价指标进行验证试验。试验得出的工艺参数组合为:水分添加量为20%,出口温度为132℃,螺杆转速为320 r/min,在此工艺条件下制出的高乳清粉熟化软颗粒教槽料淀粉糊化度为85.92%。  相似文献   

2.
为降低哺乳期母猪饲料的颗粒硬度,提高饲料中淀粉的糊化度,本试验采用熟化加工工艺,首先以水的添加量(25%~37%)、调质温度(100~120℃)和螺杆转速(150~350 r/min)为试验因素,以颗粒饲料的硬度和凝胶成型状况为试验指标,对饲料的加工工艺参数范围进行初步探索;再通过单因素试验研究各个因素对饲料中淀粉糊化度的影响,确定各因素的适宜范围;最后,采用正交试验分析3因素对淀粉糊化度的影响显著性及主次顺序,确定哺乳期母猪熟化软颗粒饲料部分加工工艺的最优参数。优化的工艺参数组合:水的添加量为31%、温度为120℃和螺杆转速为310 r/min,此时饲料的淀粉糊化度可达90.1%,颗粒硬度仅为486 g。  相似文献   

3.
本试验旨在研究同一饲料配方条件下,高效调质低温制粒工艺对颗粒饲料加工质量及维生素E保留率的影响。对照组(A组)饲料采用普通畜禽饲料加工工艺,试验组饲料分别选用3种调质器,即双层调质器(B组)、调质保持器(C组)及膨胀器(D组),对饲料配方中大料混合料进行湿热处理,经湿热处理后的大料混合料与添加剂和其他饲料原料混合后经低温(50、55、60和65℃)调质后制粒。结果表明,大料混合料经双层调质器处理后淀粉糊化度显著低于调质保持器及膨胀器处理后(P0.05)。D组淀粉糊化度显著高于B组及C组(P0.05),C组颗粒硬度显著高于B组及D组(P0.05),C组颗粒耐久性指数显著高于B组及D组(P0.05),B组颗粒成型率显著低于其余3组(P0.05),B组、C组及D组维生素E保留率显著高于A组(P0.05)。65℃组淀粉糊化度显著高于50、55及60℃组(P0.05),65℃组颗粒硬度显著高于50、55及60℃组(P0.05),65℃组颗粒耐久性指数显著高于50、55及60℃组(P0.05),65℃组颗粒成型率显著高于50及55℃组(P0.05),65℃组维生素E保留率显著低于50、55及60℃组(P0.05)。由此可见,大料混合料经调质保持器加工熟化,采用65℃低温制粒能有效保护维生素E热敏性成分,且饲料加工质量与普通畜禽饲料加工工艺制得的饲料无显著差异。  相似文献   

4.
本试验采用挤压膨化技术,以膨化度、密度、稳定性和糊化度为主要指标,研究小龙虾饲料挤压膨化加工工艺条件。结果表明:影响小龙虾饲料挤压膨化工艺的主要因素是挤压膨化温度,其次是螺杆转速,物料含水量影响最小。最佳工艺条件为物料含水量26%、螺杆转速200 r/min、挤压膨化温度105 ℃,在该工艺条件下生产的产品结构光滑质密,膨化度为1.42、密度为1.18 g/cm3、稳定性为88.7%、糊化度为92.5%。 [关键词] 挤压|饲料|小龙虾|加工工艺  相似文献   

5.
单螺杆挤压沉性膨化饲料的工艺研究   总被引:2,自引:1,他引:1  
沉性膨化饲料具有较好的耐水性。本文研究了使用单螺杆挤压机生产沉性膨化料的挤压工艺条件,研究了物料水分、机筒温度、螺杆转速对饲料颗粒性质的影响。对于粗蛋白40.6%的河蟹饲料,适宜的挤压条件为:调质后物料水分29%,螺杆转速190r/min,揉和区和熟化区机筒温度分别为120℃和40℃,挤压得饲料颗粒沉降速度0.0546m/s,水浸1h干物质损失率9.32%,耐水时间大于24h,糊化度97.12%,原料中用生大豆粉代替豆粕可改善颗粒耐水性。  相似文献   

6.
随着我国生猪养殖水平的提高,乳猪断奶日龄日益缩短。乳猪营养缺乏促进了教槽料的开发与推广应用,"全膨化低温制粒工艺"是目前最新应用的一种乳猪教槽料加工工艺,试验通过工艺参数的调整来获得有较大差异淀粉糊化度的教槽料,采用体外消化模拟技术,旨在研究不同淀粉糊化度的教槽料对乳猪体外消化率的影响,进而分析不同工段在饲料加工过程中的不同作用。  相似文献   

7.
研究旨在评价挤压膨化工艺参数对全植物蛋白配方水产饲料颗粒质量的影响,并为其生产加工提供合理参考。试验选择调质水分含量、模头温度、螺杆转速及吨料开孔面积作为自变量进行单因素试验。结果表明:(1)各项工艺参数均对颗粒物理质量有显著影响(P0.05)且影响程度大小依次为:调质水分含量模头温度螺杆转速吨料开孔面积。(2)此配方适宜生产沉性饲料且合适的加工参数为:调质水分含量28%,模头温度105℃,螺杆转速300 r/min,吨料开孔面积400 mm~2/(t·h)。  相似文献   

8.
本试验旨在研究饲料加工工艺与复合维生素添加量对生长育肥猪生长性能、血液指标及营养物质表观消化率的影响。试验选用80头30 kg的"杜×长×大"三元杂交试验猪,随机分为4组,每组5个重复,每重复4头猪,进行14周的饲养试验(生长期6周、育肥期8周)。对照组饲粮采用普通加工工艺生产,配方中添加正常剂量的复合维生素(生长期350 mg/kg、育肥期200 mg/kg,作为复合维生素添加量A组);试验组饲粮均采用高效调质低温制粒工艺生产,其中试验1组复合维生素添加量与对照组相同,同时作为复合维生素添加量A组,试验2组和试验3组复合维生素添加量分别较对照组降低20%和40%(试验2组:生长期280 mg/kg、育肥期160 mg/kg,作为复合维生素添加量B组;试验3组:生长期210 mg/kg、育肥期120 mg/kg,作为复合维生素添加量C组)。结果显示:1)生长期,高效调质低温制粒工艺组颗粒硬度及淀粉糊化度显著高于普通加工工艺组(P<0.05);高效调质低温制粒工艺组的末重及平均日增重高于普通加工工艺组,但差异不显著(P>0.05);高效调质低温制粒工艺组的粗蛋白质、干物质表观消化率均显著高于普通加工工艺组(P<0.05);不同复合维生素添加量组间生长性能差异不显著(P>0.05),但B组的粗蛋白质、干物质表观消化率显著高于A组及C组(P<0.05)。2)育肥期,高效调质低温制粒工艺组颗粒硬度显著高于普通加工工艺组(P<0.05);高效调质低温制粒工艺组的末重显著高于普通加工工艺组(P<0.05);高效调质低温制粒工艺组的粗蛋白质、干物质表观消化率均显著高于普通加工工艺组(P<0.05);高效调质低温制粒工艺组血清免疫球蛋白A(IgA)和葡萄糖(GLU)含量及谷丙转氨酶(ALT)、谷草转氨酶(AST)活性显著高于普通加工工艺组(P<0.05);各生长性能指标在不同复合维生素添加量组间均差异不显著(P>0.05),但B组的干物质表观消化率显著高于A组及C组(P<0.05),B组的血清免疫球蛋白M (IgM)含量显著高于C组(P<0.05),A组的血清ALT、AST活性显著高于B组及C组(P<0.05)。由此可见,采用高效调质低温制粒工艺生产生长育肥猪饲粮,颗粒饲料加工质量及营养物质表观消化率优于普通饲料加工工艺,且配方中减少复合维生素添加量对生长育肥猪的生长性能无显著影响。  相似文献   

9.
饲料淀粉糊化的适宜加工工艺参数研究   总被引:6,自引:1,他引:5  
为了确定饲料加工中淀粉糊化的最适宜工艺参数 ,试验研究了实验及生产条件下影响淀粉糊化的主要因素。试验一 ,采用三因素二次回归正交组合设计 ,研究玉米中淀粉糊化度与加热温度和时间、物料水分的关系。温度范围为60~120℃ ,时间为5~65分钟 ,水分为12.5 %~50 %。试验二 ,按调质条件进行随机试验 ,选择现行工业生产中蒸汽制粒工艺 ,固定蒸汽压力 (0.5MPa)、调质时间 (10秒 ) ,研究调质条件对产品淀粉糊化度的影响。结果表明 :温度、水分、时间具有不同程度地影响淀粉糊化的作用 ,水分、时间极显著促进淀粉糊化。在生产及实验条件下 ,水分均是明显决定产品糊化度的第一限制性工艺参数。在实验条件下 ,水分大于31.25 % ,淀粉糊化度迅速增加。适宜淀粉糊化度的优化工艺参数为 :温度88.6℃~95.8℃、时间26.24~33.26分钟、水分46.83~48.10 %。在生产条件下 ,提高物料水发 ,将显著增加淀粉糊化度  相似文献   

10.
本试验旨在研究不同添加比例代乳品对8~34日龄仔猪生产性能及血清指标的影响。试验选择胎次相近、个体均匀的丹系三元仔猪(杜×长×大)240头,随机分成试验A、B、C和D 4个组,每个处理6个重复,每重复10头。试验仔猪24日龄断奶,断奶前母猪与仔猪不隔离,试验期27 d。A组仔猪饲喂母乳+教槽料,B组仔猪饲喂母乳+教槽料+代乳品(教槽料与代乳品为2:1配比),C组仔猪饲喂母乳+教槽料+代乳品(教槽料与代乳品为1:1配比),D组仔猪饲喂母乳+代乳品。结果表明:试验组B、C、D与对照组A相比,营养物质(粗蛋白质、粗脂肪、钙和磷)消化率极显著高于对照组A(P0.01);试验期仔猪体重分别提高3.39%、19.53%、13.45%(P0.05),断奶后平均日增重分别提高9.80%、30.80%、23.20%(P0.01),断奶后饲料转化率分别降低5.30%、16.67%、12.12%(P0.01);添加代乳品显著降低了34日龄仔猪血清中C反应蛋白含量,而显著提高了血清生长激素(GH)、胰岛素生长因子(IGF-I)和免疫球蛋白(IgG)的含量(P0.01);同时降低血清中尿素氮(BUN)的含量(P0.05)和总氨基酸(T-AA)的含量(P0.01)。本试验结果表明代乳品能促进仔猪生产性能,改善血清生化指标,提高仔猪免疫力,其中以试验组C(教槽料与代乳品配比为1:1)的效果和效益最佳。  相似文献   

11.
本试验旨在研究加工工艺和湿态发酵豆粕添加水平及其交互作用对肉鸡颗粒饲料质量、生长性能、抗氧化能力以及肠道组织形态的影响。采用2×3双因素试验设计,加工工艺为普通调质制粒(NCP)工艺和高温调质低温制粒(HCLP)工艺;湿态发酵豆粕的添加水平为0、5%和10%。试验选取1日龄爱拔益加(AA)肉仔鸡480只,按照体重相近原则随机分为6个组,每组8个重复,每个重复10只鸡(公母各占1/2)。试验期42 d,分为前期(1~21日龄)和后期(22~42日龄)2个阶段。结果表明:1)与NCP工艺相比,HCLP工艺显著提高肉鸡前期料和后期料的淀粉糊化度、颗粒耐久性(PDI)和颗粒硬度(P<0.05);随着饲粮湿态发酵豆粕添加水平的提高,肉鸡后期料PDI显著提高(P<0.05);加工工艺和湿态发酵豆粕添加水平对肉鸡前期料颗粒硬度以及后期料淀粉糊化度和PDI有显著交互作用(P<0.05)。2)与NCP工艺相比,HCLP工艺显著提高肉鸡1~21日龄平均日增重(P<0.05);肉鸡1~21日龄、22~42日龄和1~42日龄料重比随着饲粮湿态发酵豆粕添加水平的提高而显著降低(P<...  相似文献   

12.
为研究熟化软颗粒教槽料对仔猪断奶前后生长性能及腹泻率的影响,试验选用8窝(共计84头)15日龄仔猪,随机分为对照组和试验组,分别饲喂同配方的粉状教槽料和软颗粒教槽料,每个组4个重复,每个重复1窝猪;试验分为两个阶段,分别为断奶前10d和断奶后5d,即15~25日龄和26~30日龄,仔猪在25日龄断奶。结果表明:在15~25日龄阶段,试验组仔猪平均日增重(ADG)较对照组无明显差异,平均日采食量(ADFI)增加了40.90%;在26~30日龄阶段,试验组ADG较对照组增加了12.21%,ADFI增加了34.41%;整个试验期,试验组ADFI较对照组增加了35.12%,ADG无明显差异,试验组的腹泻率也低于对照组;在仔猪断奶前后的3d,试验组的ADG和ADFI均高于对照组。综上,软颗粒教槽料在仔猪断奶后前期可有效地提高其采食量和日增重。  相似文献   

13.
饲料淀粉糊化的适宜加工工艺参数研究   总被引:12,自引:4,他引:8  
试验研究了实验及生产条件下影响淀粉糊化的重要工艺参数。试验1,采用三因素二次回归正交组合设计,研究玉米中淀粉糊化度与温度、时间、水分的关系。温度范围为60~120℃,时间为5~65min,水分为12.5%~50%。试验2,按调质条件进行随机试验,选择现行工业生产中蒸汽制粒工艺,固定蒸汽压力(0.5MPa)、调质时间(10s),研究调质条件对产品淀粉糊化度的影响。结果表明:温度、水分、时间具有不同程度地影响淀粉糊化的作用,水分、时间极显著促进淀粉糊化。生产及实验条件下,水分均是明显决定产品糊化度的第一限制性工艺参数。实验条件下,水分大于31.25%,淀粉糊化度迅速增加。适宜淀粉糊化度的优化工艺参数为温度88.6~95.8℃,时间26.24~33.26min,水分.46.83%~48.1%。生产条件下,提高物料水分,将显著增加淀粉糊化度。  相似文献   

14.
为了找出合适本场猪群的教槽料,本试验对断奶仔猪饲喂两种不同的教槽料,饲喂15天,观察不同教槽料对仔猪增重、腹泻的影响。结果显示,教槽料B与教槽料A对比,断奶仔猪头均日增重高65.66g,料重比降低0.44;每增重1kg体重的饲料成本:A料组为11.0元,B料组为10.96元。本试验结果表明,本猪场使用教槽料B能有效减少断奶仔猪断奶应激、提高日增重和降低料重比。  相似文献   

15.
本试验旨在研究不同饲料加工工艺及维生素添加量对肉仔鸡生长性能和屠宰性能的影响。试验选用480只1日龄体重接近的白羽爱拔益加肉仔鸡,随机分为4组,每组8个重复,每个重复20只鸡。对照组(A组)饲粮采用普通饲料加工工艺,配方中添加正常剂量的复合维生素[前期(1~21日龄)350 mg/kg、后期(22~42日龄)250 mg/kg];试验组饲粮采用高效调质低温制粒工艺,减少配方中复合维生素添加量(B组:前期280 mg/kg、后期200 mg/kg;C组:前期224 mg/kg、后期160 mg/kg;D组:前期180 mg/kg、后期128 mg/kg)。试验期42 d。结果表明:试验前期,A组肉仔鸡饲料淀粉糊化度显著低于B组、C组和D组(P0.05)。试验后期,A组肉仔鸡饲料颗粒耐久性指数显著低于B组、C组和D组(P0.05)。试验前期、后期和全期(1~42日龄),各组肉仔鸡的末重、平均日增重、平均日采食量和料重比均差异不显著(P0.05)。各组肉仔鸡的腿重/屠宰重、胸肉重/屠宰重、心脏重/屠宰重、肝脏重/屠宰重、脾脏重/屠宰重、肌胃重/屠宰重、腺胃重/屠宰重均差异不显著(P0.05),各组十二指肠、空肠和回肠的长度及重量均差异不显著(P0.05)。由此可见,肉仔鸡饲粮采用高效调质低温制粒工艺,颗粒饲料加工质量优于普通饲料加工工艺,且饲料配方中减少维生素添加量对肉仔鸡生长性能和屠宰性能与普通饲料加工工艺无显著差异,即该工艺可节约维生素使用量。  相似文献   

16.
陈化早籼糙米的适宜挤压膨化工艺参数研究   总被引:1,自引:0,他引:1  
试验旨在研究实验室条件下的挤压膨化机螺杆转速、套筒温度、喂料速度、原料水分等工艺参数条件,对贮存3年的陈化早籼糙米淀粉糊化度和挤压膨胀度的影响,进而确定陈化早籼糙米的适宜挤压膨化加工参数。结果表明:当螺杆转速或喂料速度加快时降低了陈化早籼糙米淀粉糊化度和挤压膨胀度;适当提高套筒温度、保持适宜的原料水分可提高淀粉糊化度和挤压膨胀度,就评价陈化早籼糙米挤压膨化的效果而言,挤压膨胀度与淀粉糊化度的效应一致。实际生产时建议采用80~90℃膨化温度,20%原料水分,30.6kg/min喂料速度的膨化工艺参数。  相似文献   

17.
通过分析目前国内主要的乳猪料生产工艺,确定了原料粉碎粒度、喂料速度、调质温度、制粒机电流、冷却机电流等指标为试验影响因素,进而研究这些关键工艺参数的控制对产品品质的影响。试验研究以天津彩虹饲料有限公司为实验数据来源,A、B、C、D是该企业按4种不同的配方生产的乳猪料产品,其中高档产品A的膨化玉米添加比例为40%,普通产品B、C、D的膨化玉米添加比例为0。试验结果表明,对于产品A最佳的工艺参数是原料的粉碎粒度为300~550μm(占92%),喂料速度为255kg/h,调质温度为64℃,制粒机电流为175A,冷却风机电流为31A;对于产品B、C、D的最佳的工艺参数:料的粉碎粒度为300~550μm(占57%),喂料速度为230kg/h,调质温度为68℃,制粒机电流为185A,冷却风机电流为33A。  相似文献   

18.
目的:研究英伟与正大教槽料对断乳仔猪生长性能影响和中药制剂对英伟教槽料效果的影响。方法:选取25日龄健康、体重相近(9.0±0.5 kg)的杜长大三元杂交断乳仔猪225头,随机分为A、B、C 3个组,每组3个重复,每个重复25头。A组、B组、C组分别饲喂正大教槽料、英伟教槽料、英伟教槽料加复方中药制剂。结果:(1)日增重方面,英伟组比正大组高8.60%,差异显著(P0.05);中药组比英伟组高6.01%,差异显著(P0.05)。(2)日采食量方面,英伟组比正大组高0.40%,差异不显著(P0.05);中药组比英伟组高3.92%,差异显著(P0.05)。(3)料肉比方面,英伟组比正大组低7.59%,差异显著(P0.05);中药组比英伟组低2.24%,差异不显著(P0.05)。结论:英伟教槽料在仔猪生产性能上明显优于正大教槽料,在英伟教槽料中添加复方中药制剂能显著提高仔猪的生产性能。  相似文献   

19.
试验旨在研究不同淀粉糊化度的颗粒饲料对猪生长性能的影响,通过添加膨化玉米和改变调质温度来获得有较大差异淀粉糊化度的颗粒饲料。试验选用80头体重为30 kg左右的猪,分为4个处理组,饲粮为同一配方,Ⅰ组、Ⅳ组制粒调质温度分别为70℃和85℃;Ⅱ、Ⅲ组分别用20%、40%的膨化玉米替代普通玉米,制粒调质温度为70℃。试验结果表明,在1~4周小猪阶段,虽然4组的日采食量和料重比差异不显著(P0.05),但Ⅱ组的料重比和Ⅰ组的日采食量明显好于其它3组,使得Ⅰ组、Ⅱ组日增重显著高于Ⅳ组(P0.05),高含量膨化玉米组和高调质温度组对小猪的生长性能没有表现出优越性,可能与饲料淀粉糊化度高造成颗粒较硬、较黏有关。在5~12周生长育肥猪阶段,虽然各组之间猪的生长性能差异不显著(P0.05),但Ⅲ组的日增重最高、料重比最小,Ⅱ组的日采食量最高、日增重仅次于Ⅲ组,Ⅰ组日采食量、日增重和料重比表现最差,Ⅳ组好于Ⅰ组,说明提高饲料的淀粉糊化度能够提高生长育肥猪的生长性能。  相似文献   

20.
本论文研究了饲料加工的两个关键参数(调质温度和时间)对育肥猪颗粒饲料淀粉糊化度和维生素沉积的影响。日粮配方为含30%干酒糟及其可溶物的玉米-豆粕型基础日粮。整个试验中配方保持不变。本试验采用2×3双因子设计,调质温度分别为77℃和88℃,调质时间分别15秒、30秒和60秒。此外,本试验还设置一个对照组,对照组饲料不采用调质制粒工艺,而是采用粉料饲喂。因此,本试验共有7个处理组。采集调质后制粒前(热干粉)、制粒后冷却前(热制粒)、以及制粒冷却后(冷制粒)的样品,并分析这三种样品的总淀粉率、淀粉糊化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号