首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
This paper aims to bring some novelty about the concentration of some heavy metals and selenium in biological citrus essential oils (CEO) produced in Sicily and Calabria in different crop years. Derivative stripping chronopotentiometry has been used as an accurate, sensitive, and rapid technique for the determination of Cd, Cu, Mn, Ni, Pb, Zn, and Se in hydrochloric acid extracts of CEO; in the optimized electrochemical conditions, detection limits of <1 microg kg(-1) were obtained for all of the studied metals. In particular, the concentrations of metals were determined in biological bergamot essential oils produced in Calabria in 1999 and 2000 and in biological CEO produced in Sicily in 2003 and 2004. The obtained results provided evidence that Mn was the most abundant metal in all of the studied CEO followed by Zn, Ni, Cu, Pb, and Se; Cd concentrations were always lower than the limit of detection (0.6 microg kg(-1)).  相似文献   

2.
A fast HPLC method for the determination of the oxygen heterocyclic compounds of citrus essential oils was developed. Five different oils were analyzed under identical conditions, by reversed-phase HPLC with photodiode array detector, for a direct comparison of the composition of their oxygen heterocyclic fraction. Analysis time was 7 min. The oils analyzed were lemon, bergamot, mandarin, sweet orange, and bitter orange. The method developed is good for rapid screening or fingerprinting of these essential oils; a slightly slower method is recommended for higher resolution and better quantitative results.  相似文献   

3.
Organochlorine pesticide contamination in 148 lemon essential oils, 123 sweet orange oils, 121 mandarin oils, and 147 bergamot oils produced in Italy in the years 1991-1996 was studied by HRGC-ECD. Confirmation analyses were carried out by GC-MS. Tetradifon, dicofol and its decomposition product 4,4'-dichlorobenzophenone were found. Over the course of the study dicofol and tetradifon residues steadily decreased; the percentage of contaminated samples reflects this course and decreases considerably from 1991 to 1996.  相似文献   

4.
This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.  相似文献   

5.
The lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes were studied using diffusive gradients in thin films (DGT). A unique feature of this research was (1) the use of DGTs with diffusive layer thicknesses ranging from 0.4 to 2.0 mm to study lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes, combined with (2) the application of a competing ligand exchange (CLE) method using Chelex 100, the same chelating resin that is used in DGT, to study the kinetic speciation. The CLE experiments were run immediately after the completion of the DGT experiments, thereby allowing effects of the competing ligand to be separated from the effects introduced by the use of the polyacrylamide gel that is used in DGT. The results indicate that Zn(II) and Cd(II) tend to form more labile and more mobile complexes with humic acid than Pb(II) or Cu(II). The dissociation rate constants of Zn(II), Cd(II), and Pb(II) were found to increase with the ionic potential of the metal, suggesting that the binding between some trace metals and humic acid has a significant covalent component. Furthermore, the results suggest that the Eigen mechanism may not be strictly obeyed for metals such as Cu(II) which have high rate constants of water exchange, k w. Consequently, the markedly slow kinetics of Cu(II)-HA species suggests that the usual equilibrium assumption may not be valid in freshwaters.  相似文献   

6.
Derivative potentiometric stripping analysis (dPSA) was utilized to evaluate the Cd(II), Cu(II), Pb(II), and Zn(II) content in olive oil samples produced in Sicily in the crop year 2000-2001. The repeatability of the method was attested at 86.36% for cadmium, at 94.94% for copper, at 99.00% for lead, and at 98.92% for zinc. Recovery tests were carried out, both on cleanup procedures and on extraction steps, on olive oil spiked at different levels; obtained recoveries were 84.52 +/- 9.86 for cadmium, 97.34 +/- 2.72 for copper, 100.68 +/- 0.67 for lead and 83.35 +/- 1.72 for zinc. Theoretic detection limits were 1.2 ng g(-1) for Cd, 3.6 ng g(-1) for Cu, 5.9 ng g(-1) for Pb, and 14.3 ng g(-1) for Zn. Found concentrations range were 15.94-58.51 ng g(-1) for Cu, 32.64-156.48 ng g(-1) for Pb, and 157.00-385.22 ng g(-1) for Zn. Copper, lead, and zinc were found in all samples. The main advantage of this determination consists of a not too aggressive metals extraction procedure using hydrochloric acid, which avoids losses of elements typical of sample calcinations methods.  相似文献   

7.
This paper reports the composition of bergamot oils obtained from plants grafted on the following rootstocks: sour orange, Carrizo citrange, trifoliate orange, Alemow, Volkamerian lemon, and Troyer citrange. The aim of this study is to evaluate the possibility of using rootstocks other than sour orange, checking their effect on the composition of the essential oil. Results are reported for analysis of 203 bergamot oils during the years 1997-1998, 1998-1999, and 1999-2000. The oils were analyzed by HRGC and HRGC/MS; 78 components were identified, and the results were in agreement with those reported in the literature for the Calabrian bergamot oils obtained from industry. Because of the quality of their essential oils, Alemow and Volkamerian lemon can be considered as substitutes for sour orange rootstocks.  相似文献   

8.
In this study, the contamination by chloroparaffin of Sicilian and Calabrian citrus essential oils, produced in the crop years 1994-1996, was investigated. The analyses were carried out on 102 lemon oils, 98 orange oils, and 96 mandarin oils, using a dual-channel GC-ECD. It was found that 53% of lemon oil, 33% of orange oil, and 38% of mandarin oil samples were contaminated. The mean contamination levels were 7.1 ppm (lemon), 2.5 ppm (orange), and 5.3 ppm (mandarin). The highest concentration of chloroparaffin found was 60 ppm in a lemon oil sample.  相似文献   

9.
This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration as Pb(II). However, Cd(II) and Zn(II) did not seem to compete with Pb(II) for strong binding sites of SRFA. These two metals did compete with Pb(II) for the weaker binding sites of SRFA. Heterogeneity of SRFA was found to play a crucial role in metal–SRFA interactions. The environmental significance of this research for freshwater is that even at relatively low Pb(II) loadings, the metals associated with lead in minerals, e.g. Cu(II), may successfully compete with Pb(II) for the same binding sites of the naturally occurring organic complexants, with the result that some of the Pb(II) may exist as free Pb2+ ions, which has been reported to be one of the toxic forms of Pb in aquatic environment.  相似文献   

10.
This study evaluated the effect of lead (Pb(II)), zinc (Zn(II)) and copper (Cu(II)) on growth and sporulation of four Halophytophthora species (Halophytophthora vesicula, Halophytophthora elongata, Halophytophthora spinosa var. lobata, and an oogonia-producing Halophytophthora sp.) isolated from different mangrove sites in Taiwan. Results show that all isolates grew well or even better at 1 ppm concentration of the heavy metals tested. Growth of all test isolates was totally inhibited at 500 ppm, except for H. spinosa var. lobata exposed to Zn(II). For sporulation, all isolates produced moderate to abundant zoosporangia or oogonia at 1 ppm Pb(II) and Zn(II). Production of zoosporangia by H. vesicula, H. elongata and H. spinosa var. lobata was significantly affected or totally inhibited at 1 ppm Pb(II) and Zn(II) and all concentrations of Cu(II). Abnormal oogonia were produced by Halophytophthora sp. at 10 ppm Cu(II) and 100 ppm of the three heavy metals. In general, Cu(II) and Zn(II) were found to be the most toxic, and the least toxic was Pb(II). H. spinosa var. lobata was the most tolerant to all the heavy metals, while H. vesicula and H. elongata were the most sensitive. Results of this study shows that increased concentrations of Pb(II), Cu(II), and Zn(II) in the mangrove environment can significantly affect growth and impair normal reproduction of Halophytophthora species.  相似文献   

11.

Purpose

The aim was to study Cu (II), Zn (II), and Pb (II) forms in technogenically transformed soils adjacent to the Karabashmed copper smelter.

Materials and methods

Studies were performed in the plume zone of the Karabash smelter and in the floodplains of Ryzhii Brook and Sak-Egla River. Geomorphological and geochemical migration processes prevail in technogenic landscapes. The differentiation of landscape-geochemical conditions plays the dominant role, which determines the localization of metals. The total Mn, Cr, Ni, Cu, Zn, Pb, Cd, and As contents and the macroelement compositions of soils were determined by X-ray fluorescence. The composition of Cu, Pb, and Zn compounds in soils was determined by the Tessier sequential fractionation. The determination of the geochemical fractions of heavy metals in soils is a key issue in the study of their mobility. The metals were fractionated into the following five fractions: exchangeable, bound to carbonates, bound to Fe and Mn oxides, bound to organic matter, and residual fractions.

Results and discussion

It is shown that the total Zn and As contents in the 0- to 5-cm layer of soils on monitoring plots exceed their lithosphere clarks in hundreds of times, and the total Cu, Pb, and Cr contents exceed their lithosphere clarks in tens of times. Factors and processes controlling the distribution and transport of Cu, Pb, and Zn forms in soils were determined. According to landscape-geochemical differentiation, the eluvial (automorphic) catena (plot T4) takes the main technogenic load of dust fallouts from the Karabash copper smelter. The accumulation of material brought from above and the geochemical precipitation of discharges from tailings dumps occur in superaqual catenas (plots T1, T2, and T3). In the technogenically transformed soils, the basic stabilizers of the mobility of Cu is organic matter, for Pb it is Fe-Mn (hydro) oxides, and for Zn - it is clay minerals.

Conclusions

The distributions of Cu, Zn, and Pb forms in the studied technogenically transformed soils are due to a number of factors: First, these are the composition of technogenic pollutants contaminating ecosystems and the time during which the contamination occurred, and second, this is the combination of physicochemical properties controlling the buffer properties of the polydisperse system of soils and parent materials.
  相似文献   

12.
Volcanic rock is a potential adsorbent for metallic ions from wastewater. This study determined the capacity of Gisenyi volcanic rock found in Northern Rwanda to adsorb Cd, Cu, Pb and Zn using laboratory scale batch experiments under a variety of experimental conditions (initial metal concentration varied from 1 to 50 mg/L, adsorbent dosage 4 g/L, solid/liquid ratio of 1:250, contact time 120 h, particle size 250–900 μm). The adsorbent had a surface area of 3 m2/g. The adsorption process was optimal at near-neutral pH 6. The maximal adsorption capacity was 6.23, 10.87, 9.52 and 4.46 mg/g for Cd, Cu, Pb and Zn, respectively. The adsorption process proceeded via a fast initial metal uptake during the first 6 h, followed by slow uptake and equilibrium after 24 h. Data fitted well the pseudo second-order kinetic model. Equilibrium experiments showed that the adsorbent has a high affinity for Cu and Pb followed by Cd and Zn. Furthermore, the rock is a stable sorbent that can be reused in multiple sorption–desorption–regeneration cycles. Therefore, the Gisenyi volcanic rock was found to be a promising adsorbent for heavy metal removal from industrial wastewater contaminated with heavy metals.  相似文献   

13.
The chemical composition of 30 samples of juices obtained from bergamot (Citrus bergamia Risso and Poit.) fruits is reported and compared to the genuineness parameters adopted by Association of the Industry of Juice and Nectars (AIJN) for lemon juice. It was found that the compositional differences between the two juices are distinguishable, although with difficulty. However, these differences are not strong enough to detect the fraudulent addition of bergamot juice to lemon juice. Instead, we found the high-performance liquid chromatography (HPLC) analysis of the flavanones naringin, neohesperidin, and neoeriocitrin, which are present in bergamot juice and practically absent in the lemon juice, is a convenient way to detect and quantify the fraudulent addition of bergamot juice. The method has been validated by calculating the detection and quantification limits according to Eurachem procedures. Employing neoeriocitrin (detection limit = 0.7 mg/L) and naringin (detection limit = 1 mg/L) as markers, it is possible to detect the addition of bergamot juice to lemon juice at the 1% level. When using neohesperidin as a marker (detection limit = 1 mg/L), the minimal percentage of detectable addition of bergamot juice was about 2%. Finally, it is reported that the pattern of flavonoid content of the bergamot juice is similar to those of chinotto (Citrus myrtifolia Raf) and bitter orange (Citrus aurantium L.) juices and that it is possible to distinguish the three kinds of juices by HPLC analysis.  相似文献   

14.
以江苏昆山市为典型区,对长三角地区土壤盐酸可提取态重金属含量的结构特征进行分析,得出该区盐酸可提取态重金属的空间分布格局并揭示了引起这种分布格局的成因和污染来源,结果表明:昆山市盐酸可提取态Cd、Cr、Cu、Pb、Zn、Hg属强变异,Ni和Co为中等变异。半方差函数模型拟合表明所有盐酸可提取态重金属元素均符合球状模型,8种重金属元素在一定范围内均存在空间相关性。采用Kriging最优内插法得到了盐酸可提取态重金属含量的空间分布格局,表明土壤盐酸可提取态重金属含量与工业活动、污水灌溉和大气降尘密切相关。通过主成分分析与地统计学相结合的方法,得出该区盐酸可提取态重金属由4个主成分构成,第一主成分为Cd、Cu、Pb、Cr和Zn,决定这一成分的主要因素为工业污水灌溉、大气降尘和元素地球化学特征;第二主成分为Ni,决定这一成分的主要因素为土壤内部因子;第三主成分为Hg,该成分主要受工业点源污染的影响;第四主成分为Co,该成分可能主要受地形影响。  相似文献   

15.
This work examined the removal of heavy metals in a system consisting of ultrafiltration (UF) or microfiltration (MF) membranes combined with sludge and minerals. The metals under examination were Ni(II), Cu(II), Pb(II), and Zn(II), while the system performance was investigated with respect to several operating parameters. Metal removal was achieved through various processes including chemical precipitation, biosorption, adsorption, ion exchange, and finally retention of the metals by the membranes. The pH had a profound effect on metal removal, as the alkaline environment favored the metal removal process. The use of sludge resulted in increased levels of metal uptake which was further enhanced with the addition of minerals. The metal removal mechanisms depended on the pH, the metal, and mineral type. The combined sludge?Cmineral?CUF system could effectively remove metal ions at an alkaline environment (pH?=?8), meeting the US EPA recommended long-term reuse limits of lead and copper and the short-term reuse limits of nickel and zinc for irrigation purposes, provided that specific mineral dosages were added.  相似文献   

16.
The adsorption characteristics of heavy metals: cadmium(II), chromium(III), copper(II), nickel(II), lead(II), and zinc(II) ions by kaolin (kaolinite) and ballclay (illite) from Thailand were studied. This research was focussed on the pH, adsorption isotherms of single-metal solutions at 30–60 °C by batch experiments, and on ion selectivityin mixed and binary combination solutions. It was found that, except Ni, metal adsorption increased with increased pH of the solutions and their adsorption followed both Langmuir and Freundlich isotherms. Adsorption of metals in the mixture solutions by kaolin was: Cr > Zn > Cu ≈ Cd ≈ Ni > Pb, and for ballclay was: Cr > Zn > Cu > Cd ≈ Pb > Ni. The adsorption of metals was endothermic, with the exception of Cd, Pb and Zn for kaolin, Cu and Zn for ballclay. Kaolin and ballclay exhibited relatively hard Lewis base adsorption site. The presence of other metals may reduce or promote the adsorption of heavy metals. The presence of Cr3+ induced the greatest reduction of metal adsorptiononto kaolin, as did the presence of Cu2+ for ballclay.  相似文献   

17.
Total content of Fe, Mn, Zn, Cu, Pb, Cd, Ni and Co in soils irrigated with sewage effluent increased with increasing years of using sewage effluent in irrigation. Iron and Co applied to the soil from sewage effluent were immobilized mainly in unavailable form; Pb, Cd, and Ni in moderately available form; and Mn, Zn, and Cu in highly available form. The concentrations of Fe, Mn, Zn and Cu in tops of alfalfa and leaves of corn grown on these soils increased substantially with increased levels of available metal content of the soil, while those of other metals were little affected. As for orange, continuous increase in leaves metal content with time was found for Fe, Mn, Zn, Co and Cd. The concentrations of Cd, Co, Ni and Pb in corn grains and orange fruits were several times higher than normal, and this reduces their suitability for human consumption.  相似文献   

18.
海泡石改良土壤效果研究   总被引:1,自引:0,他引:1  
通过连续三季盆栽试验研究海泡石提高油菜生物量,降低油菜Cd、Pb、Cu、Zn浓度及土壤Cd、Pb、Cu、Zn有效态浓度的效果。结果表明:海泡石在不同程度上提高了三季油菜的生物量,适量的海泡石可降低油菜中Cd、Pb、Cu、Zn浓度及土壤Cd、Pb、Cu、Zn有效态浓度。海泡石降低油菜中重金属浓度效果,第一季,Zn>Pb>Cd>Cu,第二季,Pb>Zn>Cd>Cu,第三季,Zn>Cd>Pb>Cu;降低有效态浓度的效果,第一季,Cd>Cu>Pb>Zn,第二季,Cu>Cd>Zn>Pb,第三季,Pb>Cd>Cu>Zn。因此,海泡石可用于土壤改良,提高油菜生物量,降低油菜中Cd、Pb、Cu、Zn浓度及土壤中Cd、Pb、Cu、Zn有效态浓度。海泡石降低油菜中重金属浓度总效果为Zn>Pb>Cd>Cu;降低土壤重金属有效态浓度总效果为Cd>Cu>Pb>Zn。  相似文献   

19.
不同高粱种质对污染土壤中重金属吸收的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用重金属含量较高的污水污染土壤,以未污染土壤作对照,种植8个甜高粱品种、2个饲用高粱品种和1个粒用高粱品种,检测8种重金属在高粱植物体内不同器官的含量,以研究不同高粱种质对重金属的吸收特性。结果表明:甜高粱对汞(Hg)、镉(Cd)、锰(Mn)和锌(Zn)的吸收在两种土壤间差异显著,对钴(Co)、铬(Cr)、铅(Pb)和铜(Cu)的吸收差异不显著。Mn在甜高粱体内含量表现为未污染土壤高于污染土壤;而Zn含量在不同器官之间存在差异,未污染土壤叶中含量远高于穗,穗中含量远高于茎和根。不同重金属在甜高粱体内的储存部位不同,污染土壤上Hg、Cd、Co、Cr和Zn在根中积累量较高,Cu、Mn和Pb在穗中的积累量较高。甜高粱、饲用高粱和粒用高粱对重金属的吸收、运输及储存在品种之间差异较大,同一品种对不同重金属的吸收也存在差异。饲用高粱表现为叶部对Cr和Zn的储存量较高,而粒用高粱‘晋中0823’则显示了茎对多种重金属的储存能力。高粱根对土壤中重金属的富集系数较高,为0.02(Pb)~0.23(Cd),转移系数变幅为0.21(Co)~3.42(Pb)。对同一种重金属的吸收量品种间差异较大,甜高粱‘西蒙’根对Co、Cr、Cu、Mn、Pb和Zn具有高富集系数,粒用高粱‘晋中0823’茎对Hg、Cd、Mn、Pb和Zn富集系数较高。高粱对重金属的吸收能力与转移能力不同步,甜高粱‘绿能1号’具有对多种重金属的高转移能力,粒用高粱‘晋中0823’只对Zn有较高的转移能力。因此本文认为甜高粱对不同重金属的吸收和转移有选择性。对Zn吸收并转移到地上部后,首先储存在叶和穗中,当吸收量足够大时,茎和根也成为储存器官;对Mn的吸收与其他重金属的吸收存在竞争作用,Hg吸收后很少向地上部转移;而对Cu、Mn和Pb吸收后在穗部的储存量较大。饲用高粱与甜高粱相比对重金属的吸收未显示明显的不同,甜高粱‘西蒙’根对多种重金属具有强储存能力,而粒用高粱‘晋中0823’的茎秆显示了比甜高粱更强的储存能力,甜高粱‘绿能1号’对多种重金属的转移能力较强。所以,选择富集和转移能力均强的高粱品种能更有效地吸收土壤中的重金属,达到修复污染土壤的目的。  相似文献   

20.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号