共查询到20条相似文献,搜索用时 15 毫秒
1.
管训贵 《河北北方学院学报(自然科学版)》2010,26(4):11-13,16
利用初等方法研究了不定方程1/x+1/y+1/z+1/w+1/xyzw=1/z+1/w以及1/x+1/y+1/z=1/w+1/xyzw的正整数解问题,分别给出了它们的全部正整数解的公式:(x,y,z,w)=[(n+k,n(n+k)-d]/k,n2(n+k)2-n(n+k)d-k/kd,n)其中n,k,d为正整数, 相似文献
2.
不定方程x2-py2=z2的正整数解 总被引:1,自引:3,他引:1
管训贵 《河北北方学院学报(自然科学版)》2009,25(5):5-7
研究了一类不定方程求正整数解的问题.借助一个引理,推导并证明了不定方程x^2-py^2=z^2(p为奇素数)正整数解的一般公式.不定方程x^2-py^2=z^2(p为奇素数)满足(x,y)=1的一切正整数解可表示为x=12(a^2+pb^2),y=ab,z=│12a2-pb2│,这里a〉0,b〉0,a,b都是奇数,p a;或x=a^2+pb^2,y=2ab,z=│a2-pb2│,这里a〉0,b〉0,a,b一奇一偶,p a. 相似文献
3.
关于不定方程x2+(p-1)y2=pz2 总被引:3,自引:2,他引:3
管训贵 《河北北方学院学报(自然科学版)》2010,26(1):12-14
研究了一类不定方程求正整数解的问题.借助一个引理,推导并证明了不定方程x2-(p-1)y2=pz2满足(x,y)=1且p≡3(mod4)的一切正整数解的一般公式,这里p为奇素数.不定方程x2-(p-1)y2=pz2满足(x,y)=1且p≡3(mod4)的一切正整数解可表示为x=|2(p-1)ab-|m1a2-2m2b2‖,y=2ab+|m1a2-2m2b2|,z=m1a2+2m2b2.这里a,b,m1,m2均为正整数,且(a,b)=(b,m1)=(a,2m2)=1,p=2m1m2+1. 相似文献
4.
利用递归数列、同余式、 Pell方程解的性质证明了不定方程x3-1=103y2仅有整数解(x, y)=(1, 0). 相似文献
5.
6.
7.
关于不定方程z^2+2(2xy)^2=(x^2-y^2+2xy)^2 总被引:2,自引:4,他引:2
管训贵 《河北北方学院学报(自然科学版)》2009,25(1)
目的 在于简化一类不定方程特解的求法.方法 利用无穷递降法.结果 给出了不定方程z2+2(2xy)2=(x2-y2+2xy)2的正整数解.结论 不定方程z2+2(2xy)2=(x2-y2+2xy)2有正整数解(x,y,z)=(3,2,1) 及(x,y,z)=(1469,84,2372159). 相似文献
8.
9.
管训贵 《河北北方学院学报(自然科学版)》2011,27(6):11-12,16
讨论不定方程x2+mxy+ny2=z2满足一定条件的整数解.主要利用分解法,给出了不定方程的一族整数解.不定方程x2+mxy+ny2=z2的一族整数解为x=k(na2-b2),y=k(2ab-ma2),z=k(na2-mab+b2),式中m,n,k,a,b均为整数. 相似文献
10.
运用递归数列的方法,证明了不定方程x(x+1)(x+2)(x+3)=35y(y+1)(y+2)(y+3)仅有一组正整数解(x,y)=(4,1). 相似文献
11.
利用初等方法研究了不定方程1/x+1/y+1/z+1/w+1/xyzw=1/z+1/w以及1/x+1/y+1/z=1/w+1/xyzw的正整数解问题,分别给出了它们的全部正整数解的公式:(x,y,z,w)=[(n+k,n(n+k)-d]/k,n2(n+k)2-n(n+k)d-k/kd,n)其中n,k,d为正整数, 相似文献
12.
运用Pell方程、递推序列、同余式及平方剩余等初等数论知识,证明了不定方程5x(x+1)(x+2)(x+3)=18y(y+1)(y+2)(y+3)仅有4组非平凡整数解(x,y)=(6, 4),(-9, 4),(6,-7),(-9,-7),同时给出该不定方程的全部整数解,分别为(x,y)=(0, 0),(0,-1),(0,-2),(0,-3),(-1, 0),(-1,-1),(-1,-2),(-1,-3),(-2, 0),(-2,-1),(-2,-2),(-2,-3),(-3, 0),(-3,-1),(-3,-2),(-3,-3),(6, 4),(-9, 4),(6,-7),(-9,-7). 相似文献
13.
运用递归序列和平方剩余的方法,证明了不定方程5x(x+1)(x+2)(x+3)=6y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(21,20). 相似文献
14.
管训贵 《河北北方学院学报(自然科学版)》2011,27(4):18-19
不定方程y3=x2+k(其中k为给定的整数)曾引起许多人的兴趣.柯召、孙琦等都对此进行过研究.本文讨论了不定方程y3=x2+1250整数解的情况,借助于平方剩余的理论缩小解的范围,同时还利用了一些初等的证明方法.最后证明了不定方程y3=x2+1250仅有整数解(x,y)=(±9,11). 相似文献
15.
利用同余理论、递归序列,以及Pell方程解的性质证明了不定方程x3 -1=1455y2 有整数解(x,y)= (1,
0),(4366,±7563);而不定方程x3 1=1455y2 仅有整数解(x,y)= (-1,0). 相似文献
16.
设D1,D2是正奇数,D2-D1=22r 1d,其中r是非负整数,d是正奇数.如果r<2,则方程组x2-D1y2=-1和z2-D2y2=-1无正整数解(x,y,z). 相似文献
17.
陈琼 《西南大学学报(自然科学版)》2018,40(4):35-40
主要运用Pell方程、递推序列、同余式及(非)平方剩余等一些初等的证明方法,对不定方程x(x+1)(x+2)(x+3)=33y(y+1)(y+2)(y+3)的解进行了研究.证明了该不定方程仅有1组正整数解(x,y)=(9,3).同时给出了不定方程(x~2+3x+1)~2-33y~2=-32的全部整数解. 相似文献
18.
19.
研究了一类不定方程求正整数解的问题.借助一个引理,推导并证明了不定方程x^2-py^2=z^2(p为奇素数)正整数解的一般公式.不定方程x^2-py^2=z^2(p为奇素数)满足(x,y)=1的一切正整数解可表示为x=12(a^2+pb^2),y=ab,z=│12a2-pb2│,这里a〉0,b〉0,a,b都是奇数,p a;或x=a^2+pb^2,y=2ab,z=│a2-pb2│,这里a〉0,b〉0,a,b一奇一偶,p a. 相似文献
20.
研究了一类不定方程求正整数解的问题.借助一个引理,推导并证明了不定方程x^2-(P-1)y^2=pz^2满足(x,y)=1且P≡3(mod4)的一切正整数解的一般公式,这里P为奇素数.不定方程x^2-(p-1)y^2=pz^2满足(x,y)=1且p≡3(mod4)的一切正整数解可表示为x=|2(p-1)ab-|m1a^2-2m2b^2||,y=2ab+|m1a^2-2m2b^2|,z=m1a^2+2m2b^2。这里a,b,m1,m2均为正整数,且(a,b)=(b,m1)=(a,2m2)=1,p=2m1m2+1. 相似文献