首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities associated with CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A were measured. Cat liver microsomes metabolized all substrates selected for the assessment of cytochrome P450 activity. The activities associated with CYP3A and CYP2B were higher than the activities of the other measured CYPs. Substrate selectivity could be demonstrated by inhibition studies with α-naphthoflavone (CYP1A), tranylcypromine/quercetine (CYP2C), quinidine (CYP2D), diethyldithiocarbamic acid (CYP2E) and ketoconazole (CYP3A) respectively. Other prototypical inhibitors used for characterization of human CYP activities such as furafylline (CYP1A), tranylcypromine (CYP2B) and sulfaphenazole (CYP2C) did not show significant effects in cat and dog liver microsomes. Moreover, IC50-values of cat CYPs differed from dog and human CYPs underlining the interspecies differences. Gender differences were observed in the oxidation of 7-ethoxy-4-trifluoromethylcoumarin (CYP2B) and 3-[2-(N, N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (CYP2D), which were significantly higher in male cats than in females. Conversely, oxidation of the substrates dibenzylfluorescein (CYP2C) and 7-methoxy-4-trifluoromethylcoumarin (CYP2E) showed significant higher activities in females than in male cats. Overall CYP-activities in cat liver microsomes were lower than in those from dogs or humans, except for CYP2B. The presented difference between feline and canine CYP-activities are useful to establish dose corrections for feline patients of intensively metabolized drugs licensed for dogs or humans.  相似文献   

2.
1. A study was conducted to determine the cytochrome P450 enzymes responsible for the bioactivation of aflatoxin B1 into its epoxide form (AFBO) in turkey liver microsomes. 2. The strategies used included the measurement of prototype substrate activity for specific human P450s, use of selective inhibitors, determination of correlation between aflatoxin bioactivation and enzymatic activity of prototype substrates and the determination of immunoreactive proteins using antibodies against human P450s. 3. Enzymatic activity and immunoreactive proteins corresponding to the turkey orthologs CYP1A1, CYP1A2, CYP2A6 and CYP3A4 were detected, but not for the CYP2D6 ortholog. 4. The results of the inhibition and correlation studies strongly suggest that the turkey CYP2A6 ortholog and, to a lesser extent, the CYP1A1 ortholog, are involved in the bioactivation of aflatoxin B1 in turkey liver microsomes. 5. This is the first study reporting the role of CYP2A6 in the bioactivation of AFB1 in an avian species and the role of CYP1A1 in any species.  相似文献   

3.
The in vivo metabolism and pharmacokinetics of flunixin meglumine and phenylbutazone have been extensively characterized; however, there are no published reports describing the in vitro metabolism, specifically the enzymes responsible for the biotransformation of these compounds in horses. Due to their widespread use and, therefore, increased potential for drug–drug interactions and widespread differences in drug disposition, this study aims to build on the limited current knowledge regarding P450‐mediated metabolism in horses. Drugs were incubated with equine liver microsomes and a panel of recombinant equine P450s. Incubation of phenylbutazone in microsomes generated oxyphenbutazone and gamma‐hydroxy phenylbutazone. Microsomal incubations with flunixin meglumine generated 5‐OH flunixin, with a kinetic profile suggestive of substrate inhibition. In recombinant P450 assays, equine CYP3A97 was the only enzyme capable of generating oxyphenbutazone while several members of the equine CYP3A family and CYP1A1 were capable of catalyzing the biotransformation of flunixin to 5‐OH flunixin. Flunixin meglumine metabolism by CYP1A1 and CYP3A93 showed a profile characteristic of biphasic kinetics, suggesting two substrate binding sites. The current study identifies specific enzymes responsible for the metabolism of two NSAIDs in horses and provides the basis for future study of drug–drug interactions and identification of reasons for varying pharmacokinetics between horses.  相似文献   

4.
Cytochrome P450 (CYP) enzymes are common sites of drug interactions in human beings. Drugs may act as inhibitors or inducers of CYPs, leading to altered clearance of a second drug. Clinically relevant drug interactions involving various CYP isoforms in people, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4, have been well documented. Analogous interactions are beginning to be characterized in dogs, for which canine CYPs share many of the same substrate ranges as in human beings.  相似文献   

5.
OBJECTIVE: To evaluate the inhibitory potency of ketoconazole (KTZ) on the metabolic activities of isozymes of cytochrome P-450 (CYP) in dogs. ANIMALS: 4 healthy 1-year-old male Beagles. PROCEDURE: Hepatic microsomes were harvested from 4 dogs after euthanasia. To investigate the effects of KTZ on CYP metabolic activities, 7-ethoxyresorufin, tolbutamide, bufuralol, and midazolam hydrochloride were used as specific substrates for CYP1A1/2, CYP2C21, CYP2D15, and CYP3A12, respectively. The concentrations of metabolites formed by CYP were measured by high-performance liquid chromatography, except for the resorufin concentrations that were measured by a fluorometric method. The reaction velocity-substrate concentration data were analyzed to obtain kinetic variables, including maximum reaction velocity, Michaelis-Menten constant, and inhibitory constant (Ki). RESULTS: KTZ competitively inhibited 7-ethoxyresorufin O-deethylation and midazolam 4-hydroxylation; it noncompetitively inhibited tolbutamide methylhydroxylation. Bufuralol 1'-hydroxylation was inhibited slightly by KTZ. The mean Ki values of KTZ were 10.6+/-6.0, 170+/-2.5, and 0.180+/-0.131 microM for 7-ethoxyresorufin O-deethylation, tolbutamide methylhydroxylation, and midazolam 4-hydroxylation, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, KTZ at a therapeutic dose may change the pharmacokinetics of CYP3A12 substrates as a result of inhibition of their biotransformation. Furthermore, no influence of KTZ on the pharmacokinetics of CYP1A1/2, CYP2C21, and CYP2D15 substrates are likely. In clinical practice, adverse drug effects may develop when KTZ is administered concomitantly with a drug that is primarily metabolized by CYP3A12.  相似文献   

6.
Characterization of cytochrome P450-mediated drug metabolism in cats   总被引:2,自引:1,他引:1  
In this study we examined activities of cytochrome P450 (CYP)1A, 2C, 2D and 3A using hepatic microsomes from five male and five female cats. CYP1A, 2C, 2D and 3A activities were referred by ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation (TBH), bufuralol 1'-hydroxylation (BLH) and midazolam 1'- and 4-hydroxylation respectively. The anti-rat CYP1A2 and CYP3A2 serum significantly inhibited EROD and midazolam 1'- and 4-hydroxylation, suggesting that EROD and midazolam 1'- and 4-hydroxylation were catalysed by CYP1A and 3A in cats respectively. Quinidine inhibited BLH in cats microsomes at quite low concentrations, suggesting that BLH was catalysed by CYP2D in cats. Tolbutamide hydroxylation activities were negligible in hepatic microsomes from both male and female cats, suggesting CYP2C activities of cats are extremely low. This suggests that CYP2C substrates should be carefully administered to cats. Although there is no sexual difference in CYP1A activities, there are differences in CYP2D and 3A activities of cats. CYP2D activities were higher (3-fold), but CYP3A activities were lower (one-fifth) in female cats. These results might suggest that CYP2D and 3A substrates should be prescribed for male and female cats using different dosage regimen.  相似文献   

7.
In vitro activities of cytochromes P450 (7-alkyl/aryloxyresorufin dealkyl(aryl)ases, testosterone hydroxylase/oxidase, 6-chlorzoxazone hydroxylase, 7-methoxy-4-trifluoromethyl-coumarin demethylase, and lauric acid hydroxylases), reductases of carbonyl group (toward metyrapone, daunorubicin, glyceraldehyde, and 4-pyridine-carboxaldehyde) and conjugation enzymes (p-nitrophenol-UDP-glucuronosyl transferase, 1-chloro-2,4-dinitrobenzene glutathione-S-tranferase) in young adults, males, non-castrated (N=6) farm animals were studied and compared. Presence of proteins cross-reacting with anti-human CYP3A4, CYP2C9, and CYP2E1 IgG was detected in all farm species. Bovine microsomes differed from other microsomes of farm species in very high 7-ethoxyresorufin-O-deethylase activity (CYP1A1/2). Significantly higher 7-methoxy-4-trifluoromethyl-coumarin demethylase (2-3 times) and 12-lauric acid hydroxylases (4-10 times) activities (probably corresponding to CYP2C and CYP4A, respectively) were found in ovine microsomes. The highest 6beta-testosterone hydroxylase activity, which is usually considered to be a CYP3A activity marker, was found in pig. Reductases of all farm animals display considerable ability to reduce carbonyl group of xenobiotics. Significant differences in level and activity of many biotransformation enzymes tested suggest that extrapolation of pharmacokinetic data obtained in one species to another (even related) could be misleading.  相似文献   

8.
Cytochrome P450 2E1 (CYP2E1) and 2A (CYP2A) are the main enzymes involved in the metabolism of skatole in pigs. In this study, physiological concentrations of androstenone, 17β‐oestradiol and testosterone were tested for their ability to regulate CYP2E1 and CYP2A activity in liver microsomes isolated from entire male and female pigs as well as in microsomes from Saccharomyces cerevisiae expressing either human recombinant CYP2E1 or CYP2A6. We found that physiological concentrations of androstenone and oestradiol had the ability to inhibit CYP2E1 activity. The magnitude of this inhibition (approximately 30%) was similar in recombinant human CYP2E1 and microsomes from entire male pigs. This inhibition was only seen when adding the steroid to the assay 15 min before the substrate. Interestingly, CYP2E1 activity in the microsomes from female pigs was not affected. None of the investigated steroids modified the activity of recombinant human CYP2A6. However, CYP2A activity was slightly increased in the microsomes from female pigs in the presence of oestradiol, but the magnitude of this increase was very low (below 10%) and probably irrelevant. Overall, these results indicate that physiological concentrations of androstenone and oestradiol have a potential to inhibit CYP2E1 activities in vitro, and that this inhibition is gender‐specific. Further studies are needed to investigate the biochemical mechanisms underlying those differences between the genders.  相似文献   

9.
10.
There are no Food and Drug Administration (FDA)-approved antimicrobial agents for use in cultured American alligators (Alligator mississippiensis) destined for human consumption yet some producers administer antibiotics for prophylaxis. The cytochromes P450-dependent mixed-function oxygenases (MFO) catalyze the oxidation of xenobiotic compounds such as drugs, pesticides and polycyclic aromatic hydrocarbons. Herein, we describe the effects of oxytetracycline, ceftazidime and enrofloxacin on the MFO system of the American alligator, Alligator mississippiensis. Juvenile alligators (4 animals/treatment) were administered these antibiotics intraperitoneally in an effort to induce hepatic microsomal cytochromes P450. Alligators treated with enrofloxacin exhibited emesis and convulsive spasms within 5 min of the initial injection. Total hepatic cytochromes P450 contents were significantly decreased in oxytetracycline-and enrofloxacin-pretreated alligators. In vitro hepatic microsomal benzyloxyresorufin O-dealkylase (BROD) activity was significantly decreased by enrofloxacin pretreatment. Western blots of proteins from antibiotic-pretreated alligator hepatic microsomes incubated with several mammalian and fish cytochromes P450 (CYP) antibodies exhibited little or no induction of CYP1A1, 2B, 2C and 2E1. In vitro incubation with enrofloxacin and oxytetracycline caused a concentration-dependent decrease in alkyl-substituted phenoxazone dealkylase activities catalyzed by phenobarbital- and 3-methylcholanthrene-induced alligator hepatic microsomes.  相似文献   

11.
Five commonly used human cytochrome P450 (CYP) inhibitors were examined for their effects on coumarin 7-hydroxylase (CYP2A) activity in pig liver microsomes. The K(m) and V(max) values for coumarin 7-hydroxylation in pig liver microsomes were estimated to be 1 μm and 0.26 nmol·mg/min, respectively. The following human CYP inhibitors caused little or no inhibition of CYP2A as defined by a K(i) > 200 μm: quinidine (CYP2D6), troleandomycin (CYP3A4), and sulfaphenazole (CYP2C9). The other two human CYP inhibitors were classified as strong inhibitors of CYP2A: 8-methoxypsoralen (CYP2A6) and α-naphthoflavone (CYP1A1/2). In the absence of a preincubation period, 8-MOP inhibited the 7-hydroxylation of coumarin with a K(i) value of 1.1 μm, which decreased to 0.1 μm when 8-MOP was preincubated with pig liver microsomes for 3 min. α-Naphthoflavone inhibited the 7-hydroxylation of coumarin with a K(i) value of 32 μm, which did not increase ability to inhibitor CYP2A when α-naphthoflavone was preincubated with pig liver microsomes for 3 min. These results of this study suggest that 8-MOP is a potent, mechanism-based inhibitor of pig CYP2A activity in pig liver microsomes.  相似文献   

12.
The apoprotein expression and the catalytic activities of cytochrome P450s involved in the biotransformation of xenobiotics were investigated in horse liver microsomes and compared with those of food producing (cattle, pigs, broiler chicks, and rabbits) and laboratory species (rats). Western blot analysis revealed the presence of proteins immunorelated to rat CYP 1A, CYP 2B, CYP 2E, and CYP 3A subfamilies in hepatic microsomes from horses and from any other examined species. With the exception of the N-demethylation of N-nitrosodimethylamine in broiler chicks, all the recorded interspecies differences were quantitative in nature. Equine preparations proved the most active in the biotransformation of the CYP 1A substrates ethoxy- and methoxyresorufin and the least active in the metabolism of aminopyrine and ethoxycoumarin. On a comparative basis, large differences were observed in the rate of the in vitro metabolism of model substrates between "minor" (rabbits, horses) and "major" food producing species. Taken in due consideration the limitations of the in vitro approach, results from this study reinforce the conclusion that studies on drug efficacy and residue depletion should be performed in each target species.  相似文献   

13.
OBJECTIVE: To evaluate the effect of oral administration of dexamethasone (DEX) at clinically relevant doses on metabolic activities of cytochrome P450 (CYP) isoenzymes in dogs and rats. ANIMALS: 15 healthy 1-year-old male Beagles and 20 healthy 10-week-old male Wistar rats. PROCEDURE: Hepatic microsomes were harvested from dogs treated orally with DEX at 2.5 and 7.5 mg for 5 days and from rats treated orally with DEX at 0.75, 6, and 48 mg/kg for 5 days. 7-ethoxyresorufin, tolbutamide, bufuralol, and midazolam were used as CYP1A, CYP2C, CYP2D, and CYP3A substrates, respectively. Concentrations of metabolites formed by CYPs were measured by use of high-performance liquid chromatography, except for the resorufin concentrations measured by use of a fluorometric method. Reaction velocity-substrate concentration data were analyzed to obtain maximum reaction velocity (Vmax) and Michaelis-Menten constant (Km). RESULTS: Values of Vmax for midazolam 4-hydroxylation were significantly decreased by treatment with DEX at 2.5 and 7.5 mg in dogs, although values of Km were not affected. Values of Vmax for bufuralol 1'-hydroxylation were also decreased by treatment with DEX. In rats, values of Vmax for midazolam 4- hydroxylation were significantly decreased by treatment with DEX at 0.75 and 6 mg/kg but significantly increased at 48 mg/kg. Other reactions were not affected by treatment with DEX. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that DEX downregulates the CYP3A subfamily when administered at clinically relevant doses to dogs. The effect of downregulation of CYP3A in dogs treated with DEX should be considered to avoid adverse effects from coadministration of drugs.  相似文献   

14.
The aim of this study was to screen the inhibitory potential of several testicular steroids on cytochrome P450 3A (CYP3A) and 2C (CYP2C) activities in porcine liver microsomes. The microsomes used in this study were obtained from pubertal male pigs of two breeds, Landrace and Duroc. For the in vitro inhibition study, porcine microsomes were incubated in the presence of 17β‐estradiol, 17α‐estradiol, androstenone, dehydroepiandrosterone and dihydrotestosterone. Both reversible and mechanism‐based inhibitions were examined. 7‐benzyloxyresorufin (BR) and 7‐benzyloxy‐4‐trifluoromethylcoumarin (BFC) were used as substrates for CYP3A, and diclofenac and tolbutamide (TB) as substrates for CYP2C. 7‐benzyloxyresorufin O‐dealkylase (BROD) activity was inhibited by all tested steroids in the microsomes from Landrace pigs via mechanism‐based mode, but in the microsomes from Duroc pigs, BROD activities were inhibited only in the presence of 17β‐oestradiol. Mechanism‐based inhibition of BFC metabolism by the tested steroids was observed in the microsomes from both breeds, but this inhibition was weak and did not exceed 20%. TB hydroxylase (TBOH) activity in the microsomes from Duroc pigs was inhibited by 17α‐oestradiol through the mechanism‐based mode of inhibition. None of the investigated steroids inhibited TBOH activity in Landrace pigs. For the in vivo study, male pigs were injected with a single dose of human chorionic gonadotropin (hCG) to stimulate testicular steroid production by the Leydig cells. In vivo stimulation with hGC did not alter BROD activity either in Landrace or in Duroc pigs. BFC metabolism was significantly induced by hCG stimulation in both breeds and TBOH activity only in Duroc pigs. Activity of diclofenac hydroxylase was not detected in either Landrace or Duroc pigs. Breed significantly affected BROD and TBOH activity with BROD being higher in Landrace and TBOH in Duroc pigs. This study improved our understanding of the role of testicular steroids in the regulation of porcine CYP450 activity.  相似文献   

15.
This study reports fluorescence high performance liquid chromatography (HPLC) and UV-Vis HPLC methods for the determination of 7-ethoxyresorufin O-deethylase (EROD) and tolbutamide methylhydroxylase (TMH) activities, respectively, using bovine liver microsomes. The detection limits were 0.022 and 5.5 pmol on the column, respectively; intra-day and inter-day precisions (expressed as relative standard deviation) were <10%. Both methods showed enough sensitivity to allow for an accurate determination of enzyme kinetic parameters according to Michaelis-Menten plots and the results were: K(m)=0.23+/-0.051 microM, V(max)=0.488+/-0.035 nmol/min/mg protein for EROD activity, and K(m)=1010+/-155.7 microM, V(max)=0.089+/-0.006 nmol/min/mg protein for TMH activity. An Eadie-Hofstee plot analysis showed that in bovine liver microsomes, EROD and TMH activities followed a monophasic kinetic pattern. alpha-Naphthoflavone, a cytochrome P450 1A1/2 (CYP1A1/2) inhibitor, and sulfaphenazole, a cytochrome P450 2C9 (CYP2C9) inhibitor, decreased EROD and TMH activities, respectively. The sensitivity of the methods allowed the use of microsomes with low enzyme activity, such as those from veal calf liver. Thus, EROD and TMH activities may be adopted as markers for the evaluation of CYP1A and CYP2C9-like activities in liver microsomes from veal and beef cattle.  相似文献   

16.
Research on drug metabolism and pharmacokinetics in large animal species including the horse is scarce because of the challenges in conducting in vivo studies. The metabolic reactions catalyzed by cytochrome P450s (CYPs) are central to drug pharmacokinetics. This study elucidated the characteristics of equine CYPs using diazepam (DZP) as a model compound as this drug is widely used as an anesthetic and sedative in horses, and is principally metabolized by CYPs. Diazepam metabolic activities were measured in vitro using horse and rat liver microsomes to clarify the species differences in enzyme kinetic parameters of each metabolite (temazepam [TMZ], nordiazepam [NDZ], p‐hydroxydiazepam [p‐OH‐DZP], and oxazepam [OXZ]). In both species microsomes, TMZ was the major metabolite, but the formation rate of p‐OH‐DZP was significantly less in the horse. Inhibition assays with a CYP‐specific inhibitors and antibody suggested that CYP3A was the main enzyme responsible for DZP metabolism in horse. Four recombinant equine CYP3A isoforms expressed in Cos‐7 cells showed that CYP3A96, CYP3A94, and CYP3A89 were important for TMZ formation, whereas CYP3A97 exhibited more limited activity. Phylogenetic analysis suggested diversification of CYP3As in each mammalian order. Further study is needed to elucidate functional characteristics of each equine CYP3A isoform for effective use of diazepam in horses.  相似文献   

17.
Swine is not only an important species in veterinary medicine research but also a popular animal model for human drug discovery. It is valuable to understand the impact of pig age on abundance and activity of porcine hepatic cytochrome P450 (CYP450). Liver microsomes were prepared from Camborough‐29 intact male pigs at the age of 1 day and 2 weeks and the castrated male pigs at the age of 5, 10, and 20 weeks. Hepatic CYP450 content in the liver microsomes was measured using a UV/visible spectroscopic method. The activities of CYP450s were evaluated by metabolism of phenacetin, coumarin, tolbutamide, bufuralol, chlorzoxazone, and midazolam. The porcine hepatic CYP450 content increased with age with a plateau between age 2 and 5 weeks. Activities of all CYP450 enzymes increased with age of pigs too. The bufuralol 1’‐hydroxylase showed the highest hepatic activities compared with other CYP enzymes at all ages of pigs. The average activities at the age of 20 weeks were about five times higher than those at the age of 5 weeks for most of the CYP enzymes. With compensation of the ratio of liver to body weights, the overall CYP450 metabolism capability of the pigs may be peaked around ages of 10 to 20 weeks. Those findings suggest that metabolism can be significantly different in growing phase of pigs and that the age may be an important factor in porcine medicine evaluation and pig model development.  相似文献   

18.
Terramycin for Fish® (oxytetracycline, OTC) is one of three approved drugs for therapeutic treatment of fish in the United States. Nothing is known, however, of the effects of this therapeutic on drug metabolizing enzymes in fish post-treatment. The main purpose of the study was to examine whether the fish CYP1A and CYP3A enzymes would cross-react with antibodies to known mammalian cytochrome P-450 forms (CYP1A1 and CYP3A). Observational feeding studies of OTC effects were conducted in hybrid striped bass, channel catfish and Nile tilapia. Oxytetracycline was mixed into the feed to achieve a daily dose of 82.8 mg per kg body weight at a feeding rate of 1% body weight per day. Hepatic microsomes of each fish were prepared and Western blotting of CYP1A1 and CYP3A4 and enzyme assays of CYP1A2 and CYP3A4 were performed prior to OTC treatment and on post-treatment days 1, 6, 11 and 21. Both goat anti-rat CYP1A1 and rabbit anti-human CYP3A4 showed good cross-reactivity with all three species in this study. All three species exhibited distinct perturbations in one or more of the variables examined on day 1 post-treatment. Immediately following the 10-day medication period, relative liver weight (RLW) of hybrid striped bass was increased 44% and remained elevated through post-treatment day 21. Increased CYP3A4 enzyme activity and protein abundance were noted in channel catfish and Nile tilapia, respectively. This observational approach demonstrated species differences both in control activities and in the timing and extent of hepatic responses to OTC. The unique perturbations of hepatic CYP450 enzymes in different fish species to OTC treatment observed in this study may have relevance for the use of additional antibiotics or other therapeutics used in aquaculture.  相似文献   

19.
OBJECTIVE: To determine the effect of oral administration of low doses of pentobarbital on cytochrome P450 (CYP) isoforms and CYP-mediated reactions in immature Beagles. ANIMALS: 42 immature (12-week-old) Beagles. PROCEDURE: Dogs were grouped and treated orally as follows for 8 weeks: low-dose pentobarbital (50 microg/d; 4 males, 4 females), mid-dose pentobarbital (150 microg/d; 4 males, 4 females), high-dose pentobarbital (500 microg/d; 4 males, 4 females), positive-pentobarbital control (10 mg/kg/d; 2 males, 2 females), positive-phenobarbital control (10 mg/kg/d; 2 males, 2 females), and negative control (saline 10.9% NaCl] solution; 5 males, 5 females). Serum biochemical and hematologic values were monitored. On necropsy examination, organ weights were determined, and histologic evaluation of tissue sections of liver, kidney, small intestine, testes, epididymis, and ovaries was performed. Hepatic and intestinal drug-metabolizing enzyme activities were measured, and relative amounts of CYP isoforms were determined by western blot analysis. RESULTS: The amount of a hepatic CYP2A-related isoform in dogs from the high-dose pentobarbital treatment group was twice that of dogs from the negative control group. CYP2C was not detectable in small intestinal mucosa of dogs from the negative control group; measurable amounts of CYP2C were found in dogs from the various (low-, mid-, and high-dose) pentobarbital treatment groups and from positive-pentobarbital and positive phenobarbital control groups. Several CYP-mediated reactions increased in a dose-dependent manner. The lowest calculated effective dose of pentobarbital ranged from 200 to 450 microg/d. CONCLUSIONS AND CLINICAL RELEVANCE: Several CYP isoforms and their associated reactions were induced in dogs by oral administration of low amounts of pentobarbital.  相似文献   

20.
Fenbendazole (FEN) and flubendazole (FLU) are benzimidazole anthelmintics often used in pig management for the control of nematodoses. The in vivo study presented here was designed to test the influence of FLU and FEN on cytochrome P4501A and other cytochrome P450 (CYP) isoforms, UDP-glucuronosyl transferase and several carbonyl reducing enzymes. The results indicated that FEN (in a single therapeutic dose as well as in repeated therapeutic doses) caused significant induction of pig CYP1A, while FLU did not show an inductive effect towards this isoform. Some of the other hepatic and intestinal biotransformation enzymes that were assayed were moderately influenced by FEN or FLU. Strong CYP1A induction following FEN therapy in pigs may negatively affect the efficacy and pharmacokinetics of FEN itself or other simultaneously or consecutively administered drugs. From the perspective of biotransformation enzyme modulation, FLU would appear to be a more convenient anthelmintic therapy of pigs than FEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号