共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A preliminary investigation comparing pre-operative morphine and buprenorphine for postoperative analgesia and sedation in cats 总被引:1,自引:1,他引:1
GW Stanway BVSC Cert VA PM Taylor MA Vet MB PhD DVA Dip ECVA & DC Brodbelt† MA Vet MB DVA Dip ECVA MRCVS 《Veterinary anaesthesia and analgesia》2002,29(1):29-35
Objective To compare the postoperative analgesic and sedative properties of buprenorphine and morphine in cats. Study Design Prospective, randomized, blinded study. Animals Thirty‐two domestic cats undergoing surgery. Methods Cats received pre‐anaesthetic medication with acepromazine (0.05 mg kg?1) given intramuscularly and were randomly allocated to group M and given morphine (0.1 mg kg?1) intramuscularly (IM) or to group B and given buprenorphine (0.01 mg kg?1) IM. Anaesthesia was induced with propofol and maintained with halothane in oxygen and nitrous oxide. Pain and sedation scores using visual analogue scales, and heart and respiratory rates, were measured immediately before, and 30, 60, 120, 180, 300 and 420 minutes after anaesthesia. Results Pain scores were significantly lower at 60, 120 and 180 minutes after anaesthesia in group B. Group B also had higher heart rates at 30 minutes. There were no other statistically significant differences between the groups. Clinical relevance Buprenorphine (0.01 mg kg?1) appeared to provide better postoperative analgesia than morphine (0.1 mg kg?1) and may also have a longer duration of action. 相似文献
3.
《Veterinary anaesthesia and analgesia》2020,47(1):76-81
ObjectiveTo compare the efficacy of a medetomidine constant rate infusion (CRI) with a detomidine CRI for standing sedation in horses undergoing high dose rate brachytherapy.Study designRandomized, controlled, crossover, blinded clinical trial.AnimalsA total of 50 horses with owner consent, excluding stallions.MethodsEach horse was sedated with intravenous acepromazine (0.02 mg kg–1), followed by an α2-adrenoceptor agonist 30 minutes later and then by butorphanol (0.1 mg kg–1) 5 minutes later. A CRI of the same α2-adrenoceptor agonist was started 10 minutes after butorphanol administration and maintained for the treatment duration. Treatments were given 1 week apart. Each horse was sedated with detomidine (bolus dose, 10 μg kg–1; CRI, 6 μg kg–1 hour–1) or medetomidine (bolus dose, 5 μg kg–1; CRI, 3.5 μg kg–1 hour–1). If sedation was inadequate, a quarter of the initial bolus of the α2-adrenoceptor agonist was administered. Heart rate (HR) was measured via electrocardiography, and sedation and behaviour evaluated using a previously published scale. Between treatments, behaviour scores were compared using a Wilcoxon signed-rank test, frequencies of arrhythmias with chi-square tests, and HR with two-tailed paired t tests. A p value <0.05 indicated statistical significance.ResultsTotal treatment time for medetomidine was longer than that for detomidine (p = 0.04), and ear movements during medetomidine sedation were more numerous than those during detomidine sedation (p = 0.03), suggesting there may be a subtle difference in the depth of sedation. No significant differences in HR were found between treatments (p ≥ 0.09). Several horses had arrhythmias, with no difference in their frequency between the two infusions.Conclusions and clinical relevanceMedetomidine at this dose rate may produce less sedation than detomidine. Further studies are required to evaluate any clinical advantages to either drug, or whether a different CRI may be more appropriate. 相似文献
4.
Berit L Fischer DVM Diplomate ACVA John W Ludders DVM Diplomate ACVA Makoto Asakawa BVSc Lisa A Fortier DVM PhD Diplomate ACVS Susan L Fubini DVM Diplomate ACVS Alan J Nixon DVM PhD Diplomate ACVS Rolfe M Radcliffe DVM Diplomate ACVS & Hollis N Erb† DVM MS PhD 《Veterinary anaesthesia and analgesia》2009,36(1):67-76
ObjectiveTo compare the analgesic efficacy of buprenorphine plus detomidine with that of morphine plus detomidine when administered epidurally in horses undergoing bilateral stifle arthroscopy.Study designProspective, randomized, blinded clinical trial.AnimalsTwelve healthy adult horses participating in an orthopedic research study. Group M (n = 6) received morphine (0.2 mg kg?1) and detomidine (0.15 mg kg?1) epidurally; group B (n = 6) received buprenorphine (0.005 mg kg?1) and detomidine (0.15 mg kg?1) epidurally.MethodsHorses received one of two epidural treatments following induction of general anesthesia for bilateral stifle arthroscopy. Heart rate (HR), mean arterial blood pressure (MAP), end-tidal CO2 (Pe’CO2), and end-tidal isoflurane concentrations (E’Iso%) were recorded every 15 minutes following epidural administration. Post-operative assessment was performed at 1, 2, 3, 6, 9, 12, and 24 hours after standing; variables recorded included HR, respiratory rate (fR), abdominal borborygmi, defecation, and the presence of undesirable side effects. At the same times post-operatively, each horse was videotaped at a walk and subsequently assigned a lameness score (0-4) by three ACVS diplomates blinded to treatment and who followed previously published guidelines. Nonparametric data were analyzed using Wilcoxon’s rank-sum test. Inter- and intra-rater agreement were determined using weighted kappa coefficients. Statistical significance was set at p = 0.05.ResultsNo statistically significant differences were found between groups with respect to intra-operative HR, MAP, E’Iso%, or post-operative HR, gastrointestinal function and cumulative median lameness scores. Post-operative fR in group B [24 (12-30), median (range)] breaths per minute was significantly higher than in group M [18 (15-20)] breaths per minute, p = 0.04.Conclusions and clinical relevanceIn horses undergoing bilateral stifle arthroscopy, these doses of buprenorphine plus detomidine injected epidurally produced analgesia similar in intensity and duration to that of morphine plus detomidine injected epidurally. 相似文献
5.
Ringer SK Portier KG Fourel I Bettschart-Wolfensberger R 《Veterinary anaesthesia and analgesia》2012,39(1):1-11
ObjectiveTo elaborate constant rate infusion (CRI) protocols for xylazine (X) and xylazine/butorphanol (XB) which will result in constant sedation and steady xylazine plasma concentrations.Study designBlinded randomized experimental study.AnimalsTen adult research horses.MethodsPart I: After normal height of head above ground (HHAG = 100%) was determined, a loading dose of xylazine (1 mg kg?1) with butorphanol (XB: 18 μg kg?1) or saline (X: equal volume) was given slowly intravenously (IV). Immediately afterwards, a CRI of butorphanol (XB: 25 μg kg?1 hour?1) or saline (X) was administered for 2 hours. The HHAG was used as a marker of depth of sedation. Sedation was maintained for 2 hours by additional boluses of xylazine (0.3 mg kg?1) whenever HHAG >50%. The dose of xylazine (mg kg?1 hour?1) required to maintain sedation was calculated for both groups. Part II: After the initial loading dose, the calculated xylazine infusion rates were administered in parallel to butorphanol (XB) or saline (X) and sedation evaluated. Xylazine plasma concentrations were measured by HPLC-MS-MS at time points 0, 5, 30, 45, 60, 90, and 120 minutes. Data were analyzed using paired t-test, Wilcoxon signed rank test and a 2-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in xylazine requirements (X: 0.69, XB: 0.65 mg kg?1 hour?1) between groups. With treatment X, a CRI leading to prolonged sedation was developed. With XB, five horses (part I: two, part II: three) fell down and during part II four horses appeared insufficiently sedated. Xylazine plasma concentrations were constant after 45 minutes in both groups.ConclusionXylazine bolus, followed by CRI, provided constant sedation. Additional butorphanol was ineffective in reducing xylazine requirements and increased ataxia and apparent early recovery from sedation in unstimulated horses.Clinical relevanceData were obtained on unstimulated healthy horses and extrapolation to clinical conditions requires caution. 相似文献
6.
Ringer SK Portier KG Fourel I Bettschart-Wolfensberger R 《Veterinary anaesthesia and analgesia》2012,39(1):12-20
ObjectiveTo determine constant rate infusion (CRI) protocols for romifidine (R) and romifidine combined with butorphanol (RB) resulting in constant sedation and romifidine plasma concentrations.Study designBlinded randomized crossover study.AnimalsTen adult research horses.MethodsPart I: After determining normal height of head above ground (HHAG = 100%), loading doses of romifidine (80 μg kg?1) with butorphanol (RB: 18 μg kg?1) or saline (R) were given intravenously (IV). Immediately afterwards, a butorphanol (RB: 25 μg kg?1 hour?1) or saline (R) CRI was administered for 2 hours. The HHAG was used as marker of sedation depth. Sedation was maintained for 2 hours by additional romifidine (20 μg kg?1) whenever HHAG > 50%. The dose rate of romifidine (μg kg?1 hour?1) required to maintain sedation was calculated for both treatments. Part II: After loading doses, the romifidine CRIs derived from part I were administered in parallel to butorphanol (RB) or saline (R). Sedation and ataxia were evaluated periodically. Romifidine plasma concentrations were measured by HPLC-MS-MS at 0, 5, 10, 15, 30, 45, 60, 90, 105, and 120 minutes. Data were analyzed using paired t-test, Fisher's exact test, Wilcoxon signed rank test, and two-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in romifidine requirements (R: 30; RB: 29 μg kg?1 hour?1). CRI protocols leading to constant sedation were developed. Time to first additional romifidine bolus was significantly longer in RB (mean ± SD, R: 38.5 ± 13.6; RB: 50.5 ± 11.7 minutes). Constant plasma concentrations of romifidine were achieved during the second hour of CRI. Ataxia was greater when butorphanol was added.ConclusionRomifidine bolus, followed by CRI, provided constant sedation assessed by HHAG. Butorphanol was ineffective in reducing romifidine requirements in unstimulated horses, but prolonged the sedation caused by the initial romifidine bolus.Clinical relevanceBoth protocols need to be tested under clinical conditions. 相似文献
7.
Charlotte Marly Regula Bettschart‐Wolfensberger Paeivi Nussbaumer Sebastien Moine Simone K Ringer 《Veterinary anaesthesia and analgesia》2014,41(5):491-497
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous. 相似文献
8.
DV Wilson BVSc MS Dipl ACVA GV Bohart DVM AT Evans DVM MS Dipl ACVA S Robertson BVMS PhD Dipl ACVA Dipl ECVA Y Rondenay†DVM 《Veterinary anaesthesia and analgesia》2002,29(1):54-57
Objective To assess the effectiveness of a detomidine infusion technique to provide standing chemical restraint in the horse. Design Retrospective study. Animals Fifty‐one adult horses aged 9.5 ± 6.9 years (range 1–23 years) and weighing 575 ± 290.3 kg. Methods Records of horses presented to our clinic over a 3‐year period in which a detomidine infusion was used to provide standing chemical restraint were reviewed. Information relating to the types of procedure performed, duration of infusion, drug dosages and adjunct drugs administered was retrieved. Results Detomidine was administered as an initial bolus loading dose (mean ± SD) of 7.5 ± 1.87 µg kg?1. The initial infusion rate was 0.6 µg kg?1 minute?1, and this was halved every 15 minutes. The duration of the infusion ranged from 20 to 135 minutes. Twenty horses received additional detomidine or butorphanol during the procedure. All horses undergoing surgery received local anesthesia or epidural analgesia in addition to the detomidine infusion. A wide variety of procedures were performed in these horses. Conclusions Detomidine administered by infusion provides prolonged periods of chemical restraint in standing horses. Supplemental sedatives or analgesics may be needed in horses undergoing surgery. Clinical relevance An effective method that provides prolonged periods of chemical restraint in standing horses is described. The infusion alone did not provide sufficient analgesia for surgery and a significant proportion of animals required supplemental sedatives and analgesics. 相似文献
9.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery. 相似文献
10.
Reasons for performing study: To investigate the antinociceptive effects of buprenorphine administered in combination with acepromazine in horses and to establish an effective dose for use in a clinical environment. Objectives: To evaluate the responses to thermal and mechanical stimulation following administration of 3 doses of buprenorphine compared to positive (butorphanol) and negative (glucose) controls. Methods: Observer blinded, randomised, crossover design using 6 Thoroughbred geldings (3–10 years, 500–560 kg). Thermal and mechanical nociceptive thresholds were measured 3 times at 15 min intervals. Horses then received acepromazine 0.05 mg/kg bwt with one of 5 treatments i.v.: 5% glucose (Glu), butorphanol 100 µg/kg bwt (But) buprenorphine 5 µg/kg bwt (Bup5), buprenorphine 7.5 µg/kg bwt (Bup7.5) and buprenorphine 10 µg/kg bwt (Bup10). Thresholds were measured 15, 30, 45, 60, 90, 120, 150, 180, 230 min, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 24 h post treatment administration. The 95% confidence intervals for threshold temperature (ΔT) for each horse were calculated and an antinociceptive effect defined as ΔT, which was higher than the upper limit of the confidence interval. Duration of thermal antinociception was analysed using a within‐subjects ANOVA and peak mechanical thresholds with a general linear model with post hoc Tukey tests. Significance was set at P<0.05. Results: Mean (± s.d.) durations of thermal antinociception following treatment administration were: Glu 0.5 (1.1), But 2.9 (2.0), Bup5 7.4 (2.3), Bup7.5 7.8 (2.7) and Bup10 9.4 (1.1) h. B5, B7.5 and B10 were significantly different from Glu and But. No serious adverse effects occurred, although determination of mechanical thresholds was confounded by locomotor stimulation. Conclusions: Administration of acepromazine and all doses of buprenorphine produced antinociception to a thermal stimulus for significantly longer than acepromazine and either butorphanol or glucose. Potential relevance: This study suggests that buprenorphine has considerable potential as an analgesic in horses and should be examined further under clinical conditions and by investigation of the pharmacokinetic/pharmacodynamic profile. 相似文献
11.
12.
《Veterinary anaesthesia and analgesia》2022,49(6):624-633
ObjectiveTo evaluate the effects of detomidine or romifidine on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing isoflurane anaesthesia.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 63 healthy horses undergoing elective surgery during general anaesthesia.MethodsHorses were randomly allocated to three groups of 21 animals each. In group R, horses were given romifidine intravenously (IV) for premedication (80 μg kg–1), maintenance (40 μg kg–1 hour–1) and before recovery (20 μg kg–1). In group D2.5, horses were given detomidine IV for premedication (15 μg kg–1), maintenance (5 μg kg–1 hour–1) and before recovery (2.5 μg kg–1). In group D5, horses were given the same doses of detomidine IV for premedication and maintenance but 5 μg kg–1 prior to recovery. Premedication was combined with morphine IV (0.1 mg kg–1) in all groups. Cardiovascular and blood gas variables, expired fraction of isoflurane (Fe′Iso), dobutamine or ketamine requirements, recovery times, recovery events scores (from sternal to standing position) and visual analogue scale (VAS) were compared between groups using either anova followed by Tukey, Kruskal-Wallis followed by Bonferroni or chi-square tests, as appropriate (p < 0.05).ResultsNo significant differences were observed between groups for Fe′Iso, dobutamine or ketamine requirements and recovery times. Cardiovascular and blood gas measurements remained within physiological ranges for all groups. Group D5 horses had significantly worse scores for balance and coordination (p = 0.002), overall impression (p = 0.021) and final score (p = 0.008) than group R horses and significantly worse mean scores for VAS than the other groups (p = 0.002).Conclusions and clinical relevanceDetomidine or romifidine constant rate infusion provided similar conditions for maintenance of anaesthesia. Higher doses of detomidine at the end of anaesthesia might decrease the recovery quality. 相似文献
13.
A comparison of epidural buprenorphine with epidural morphine for postoperative analgesia following stifle surgery in dogs 总被引:2,自引:1,他引:2
Lesley J Smith DVM Diplomate ACVA Jeff Kwang-An Yu BS 《Veterinary anaesthesia and analgesia》2001,28(2):87-96
Objective To compare the efficacy of epidural buprenorphine with epidural morphine for post‐operative pain relief in dogs undergoing cranial cruciate ligament rupture repair. Study design A randomized, double blind clinical trial. Animals Twenty client‐owned dogs with cranial cruciate ligament rupture. Methods Dogs were randomly assigned to receive either epidural buprenorphine (4 µg kg?1) or epidural morphine (0.1 mg kg?1) in a total volume of 0.2 mL kg?1. Epidural injections were performed immediately after induction of anesthesia. End‐tidal halothane and CO2 were recorded every 15 minutes from the time of epidural administration of drug to extubation. A numerical rating pain score system was used by a blinded observer to evaluate analgesia beginning at extubation and continuing at specific intervals for 24 hours after surgery. Heart rate, respiratory rate, and blood pressure were recorded noninvasively at the same times. If pain score indicated moderate discomfort, rescue morphine at 1.0 mg kg?1 was administered intramuscularly. Results There were no significant differences between groups with respect to pain score, heart rate, respiratory rate, indirect blood pressure, end‐tidal halothane or end‐tidal CO2 at any time point. Fifty percent of dogs in the buprenorphine group and 50% of dogs in the morphine group required rescue analgesic medication. Time of systemic rescue morphine administration did not differ significantly between the two groups. There were no clinically observable side‐effects from epidural administration of either drug in any of the dogs of this study. Conclusions Epidural buprenorphine is as effective as epidural morphine for the relief of postoperative hindlimb orthopedic pain in dogs. Clinical relevance Buprenorphine appears to be an effective opioid for epidural use in healthy dogs. Buprenorphine may offer certain advantages over morphine for epidural use, such as lower abuse potential and, in some clinics, reduced cost and less wastage of drug. 相似文献
14.
Ahram KIM Naoki SASAKI Inhyung LEE Jong-pil SEO 《The Journal of veterinary medical science / the Japanese Society of Veterinary Science》2021,83(4):643
The purpose of this study was to assess the cardiorespiratory and behavioral responses to the combination of medetomidine and tramadol (M-T) or butorphanol (M-B) in standing laparoscopic ovariectomy in horses. One ovary was removed under M-T and the contralateral ovary was removed under M-B with at least 4 weeks between operations at random. Horses were sedated using intravenous medetomidine (5 µg/kg) followed by tramadol (1 mg/kg) or butorphanol (10 µg/kg) after 5 min. Sedation was maintained through the repeated injection of medetomidine (1 µg/kg) and tramadol (0.4 mg/kg) or medetomidine (1 µg/kg) and butorphanol (4 µg/kg) every 15 min. Cardiorespiratory function and behavioral responses, including, sedation, ataxia, and analgesia, were assessed during the surgery. There were no significant differences in cardiorespiratory values and sedation and analgesia scores between M-T and M-B. Ataxia scores were significantly lower in M-T than in M-B. This result suggests that M-T could maintain smooth and stable standing surgery with minimal cardiorespiratory changes in horses. 相似文献
15.
A 9-year-old show pony mare became acutely lame following removal of a bone sequestrum of the distal phalanx of the right thoracic limb. The mare also suffered from ongoing right dorsal colitis secondary to previous long-term nonsteroidal anti-inflammatory drug (NSAID) use. To avoid further NSAID use, a protocol for caudal epidural administration of morphine and detomidine in an increased volume was used to provide analgesia to the thoracic limbs. A total volume of 50 mL (0.2 mL/kg bwt) was administered over approximately 90 s. Immediately following the injection, the pony collapsed into lateral recumbency and experienced an apparent generalised seizure characterised by loss of consciousness and frantic paddling of all four limbs. The pony recovered rapidly without intervention, and no residual neurological deficits were noted. The epidural analgesia resulted in a marked improvement in comfort levels. The speed of injection is thought to have caused a change in epidural and intracranial pressures resulting in a generalised seizure and highlights the importance of administering large volumes slowly. 相似文献
16.
MC Niimura del Barrio Rachel C. Bennett J.M. Lynne Hughes 《Veterinary anaesthesia and analgesia》2017,44(3):473-482
Objective
Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery.Study design
Prospective, randomised, blinded, clinical trial.Animals
A total of 24 adult healthy horses.Methods
All horses were administered intramuscular acepromazine (0.02 mg kg?1) and either intravenous detomidine (0.02 mg kg?1) (group D), romifidine (0.08 mg kg?1) (group R) or xylazine (1.0 mg kg?1) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg?1 hour?1) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg?1 hour?1) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe′Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia–start surgery); Surgery 1 (start surgery–30 minutes later); and Surgery 2 (end Surgery 1–end anaesthesia). A linear mixed model was used to analyse the data. A value of p < 0.05 was considered significant.Results
There was a difference in plasma lactate between ‘baseline’ and ‘once standing’ in all three groups (p < 0.01); values did not differ significantly between groups. In groups D and R, Fe′Iso decreased significantly by 18% (to 1.03%) and by 15% (to 1.07%), respectively, during Surgery 2 compared with group C (1.26%); p < 0.006, p < 0.02, respectively.Conclusions and clinical relevance
Intraoperative detomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery. 相似文献17.
Lin HC Riddell MG 《Veterinary therapeutics : research in applied veterinary medicine》2003,4(3):285-291
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine. 相似文献
18.
OBJECTIVE: To evaluate histamine release and selected physiologic variables during constant rate infusion (CRI) of morphine in dogs. ANIMALS: Five healthy, conscious, intact female dogs. MATERIAL AND METHODS: Using a Latin square, repeated-measures design, dogs were randomly assigned to three treatment groups to receive a 4-hour CRI of saline (SAL), or a loading dose of morphine at 0.3 mg kg(-1) (LM), or 0.6 mg kg(-1) (HM), followed by an infusion of 0.17 mg kg(-1) hour(-1) (LM) and 0.34 mg kg(-1) hour(-1) (HM) respectively. Dogs received each of the three treatments at intervals of at least 7 days. Plasma histamine concentration, skin flushing, edema and wheals, heart rate and rhythm and non-invasive arterial blood pressure were measured before the loading dose and at 1, 2, 5, 15, 30, 60, 120, 180 and 240 minutes during the CRI, or at the time of occurrence. RESULTS: The loading dose induced the highest histamine release in the HM group being statistically higher than the SAL group. The histamine release obtained in the LM group after the loading dose did not differ from SAL. During the infusion, plasma histamine levels were numerically higher in the LM group. Besides one dog that developed hypotension for 2 minutes after the loading dose in the HM group and one dog that showed occasional ventricular premature contractions during both morphine infusions, cardiovascular variables were similar among the three treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: Both doses of morphine induced variable histamine release with minimal adverse cardiovascular effects in these conscious, healthy dogs. The plasma histamine levels obtained may be associated with significant hemodynamic changes in patients with limited cardiovascular reserve and sympathetic nervous tone. 相似文献
19.
20.
Cardiopulmonary effects of dexmedetomidine and ketamine infusions with either propofol infusion or isoflurane for anesthesia in horses 下载免费PDF全文
Tanya Duke‐Novakovski Carolina Palacios‐Jimenez Tara Wetzel Lisa Rymes Andres F Sanchez‐Teran 《Veterinary anaesthesia and analgesia》2015,42(1):39-49
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia. 相似文献