共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacokinetics and body fluid and endometrial concentrations of cephapirin in mares 总被引:1,自引:0,他引:1
Six healthy adult horse mares were each given a single injection of sodium cephapirin (20 mg/kg of body weight, IV), and serum cephapirin concentrations were measured serially over a 6-hour period. The mean elimination rate constant was 0.78 hour-1 and the elimination half-life was 0.92 hours. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.17 L/kg and 598 ml/hour/kg, respectively. Each mare was then given 4 consecutive IM injections of sodium cephapirin (400 mg/ml) at a dosage level of 20 mg/kg. Cephapirin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 14.8 micrograms/ml 25 minutes after the 4th injection. The highest mean synovial and peritoneal concentrations were 4.6 micrograms/ml and 5.0 micrograms/ml, respectively, 2 hours after the 4th injection. The highest mean endometrial concentration was 2.2 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 7,421 micrograms/ml. Cephapirin did not readily penetrate the CSF. When cephapirin was given IM at the same dose, but in a less concentrated solution (250 mg/ml), serum concentrations peaked at 25.0 micrograms/ml 20 minutes after injection, but the area under the serum concentration-time curve was not significantly different (P greater than 0.05). The bioavailability of the drug was greater than or equal to 95% after IM injection. 相似文献
2.
Pharmacokinetics and body fluid and endometrial concentrations of cefoxitin in mares 总被引:1,自引:0,他引:1
Four healthy adult mares were each given a single injection of sodium cefoxitin (20 mg/kg of body weight, IV), and serum cefoxitin concentrations were measured serially during a 6-hour period. The mean elimination rate constant was 1.08/hour and the elimination half-life was 0.82 hour. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.12 L/kg and 259 ml/hr/kg, respectively. Each mare and 2 additional mares were then given 4 consecutive IM injections of sodium cefoxitin (400 mg/ml) at a dosage of 20 mg/kg. Cefoxitin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 23.1 micrograms/ml 30 minutes after the 2nd injection. The highest mean synovial concentration was 11.4 micrograms/ml 1 hour after the 4th injection. The highest mean peritoneal concentration was 10.4 micrograms/ml 2 hours after the 4th injection. The highest mean endometrial concentration was 4.5 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 11,645 micrograms/ml. Cefoxitin did not readily penetrate the CSF. Bioavailability of cefoxitin given IM was 65% to 89% (mean +/- SEM = 77% +/- 5.9%). One of the 6 mares developed acute laminitis during the IM experiment. 相似文献
3.
Pharmacokinetics and body fluid and endometrial concentrations of ormetoprim-sulfadimethoxine in mares. 下载免费PDF全文
Six healthy adult mares were each given an oral loading dose of ormetoprim(OMP)-sulfadimethoxine (SDM) at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg, followed by four maintenance doses of 4.6 mg of OMP/kg and 22.9 mg of SDM/kg, at 24 h intervals. Ormetoprim and SDM concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid, urine and endometrium. The highest mean serum OMP concentration was 0.92 micrograms/mL 0.5 h after the first dose; the highest mean SDM concentration was 80.9 micrograms/mL 8 h after the first dose. The highest mean synovial fluid concentrations were 0.14 microgram of OMP/mL and 28.5 micrograms of SDM/mL 12 h after the first dose. The highest mean peritoneal fluid concentrations were 0.19 micrograms of OMP/mL 6 h after the first dose and 25.5 micrograms of SDM/mL 8 h after the fifth dose. The highest mean endometrial concentrations were 0.56 micrograms of OMP/g and 28.5 micrograms of SDM/g 4 h after the fifth dose. The mean cerebrospinal fluid concentrations were 0.08 micrograms of OMP/mL and 2.1 micrograms of SDM/mL 5 h after the fifth dose. Mean trough urine drug concentrations were greater than or equal to 0.4 micrograms of OMP/mL and greater than or equal to 172 micrograms of SDM/mL. Two of the mares were each given a single intravenous (IV) injection of OMP and SDM at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg. Excitation and muscle fasciculations were observed in both mares after IV administration and all scheduled blood samples could be collected from only one of the two mares.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Amikacin sulfate in mares: pharmacokinetics and body fluid and endometrial concentrations after repeated intramuscular administration 总被引:2,自引:0,他引:2
M P Brown R M Embertson R R Gronwall C Beal I G Mayhew S H Curry 《American journal of veterinary research》1984,45(8):1610-1613
Six mares were given 5 IM injections (at 12-hour intervals between doses) of amikacin sulfate at a dosage of 7 mg/kg of body weight. Serum amikacin concentrations were measured serially throughout the study; synovial, peritoneal, endometrial, and urine concentrations were determined after the last injection. Amikacin concentrations of the CSF were measured serially in 3 of the 6 mares; 1 of the 3 mares had septic meningitis. Mean serum amikacin concentrations peaked at 1 to 2 hours after IM injection. The highest mean serum concentration was 19.2 micrograms/ml (1.5 hours after the 5th injection). The highest mean synovial concentration was 10.8 micrograms/ml at 2 hours after the 5th injection; the highest mean peritoneal concentration was 16.2 micrograms/ml at 3 hours after the 5th injection. The mean endometrial amikacin concentration was 2.5 micrograms/g (1.5 hours after the 5th injection). Amikacin reached a CSF concentration of 0.97 micrograms/ml in the mare with meningitis, but amikacin was not detected in CSF of healthy mares. Urine concentrations reached 1,458 micrograms/ml. Pharmacokinetic values were estimated after the 1st injection (elimination rate constant = 0.31/hour; half-life = 2.3 hours; apparent volume of distribution = 0.26 L/kg), and after the 5th injection (elimination rate constant = 0.28/hour; half-life = 2.6 hours; apparent volume of distribution = 0.30 L/kg); significant differences were not observed. 相似文献
5.
T E Specht M P Brown R R Gronwall W J Rib A E Houston 《American journal of veterinary research》1992,53(10):1807-1812
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares. 相似文献
6.
G R Haines M P Brown R R Gronwall K A Merritt L K Baltzley 《Canadian journal of veterinary research》2001,65(3):181-187
Pharmacokinetics and distribution of orbifloxacin into body fluids and endometrium was studied in 6 mares after intragastric (IG) administration at a single dose rate of 7.5 mg/kg body weight. Orbifloxacin concentrations were serially measured in serum, synovial fluid, peritoneal fluid, urine, cerebrospinal fluid, and endometrial tissues over 24 hours. Minimum inhibitory concentrations of orbifloxacin were determined for 120 equine pathogens over an 11-month period. The mean peak serum concentration (Cmax) was 2.41+/-0.30 microg/mL at 1.5 hours after administration and decreased to 0.17+/-0.01 microg/mL (Cmin) at 24 hours. The mean elimination half-life (t1/2) was 9.06+/-1.33 hours and area under the serum concentration vs time curve (AUC) was 20.54+/-1.70 mg h/L. Highest mean peritoneal fluid concentration was 2.15+/-0.49 microg/mL at 2 hours. Highest mean synovial fluid concentration was 1.17+/-0.28 microg/mL at 4 hours. Highest mean urine concentration was 536.67+/-244.79 microg/mL at 2 hours. Highest mean endometrial concentration was 0.72+/-0.23 microg/g at 1.5 hours. Mean CSF concentration was 0.46+/-0.55 microg/mL at 3 hours. The minimum inhibitory concentration of orbifloxacin required to inhibit 90% of isolates (MIC90) ranged from < or = 0.12 to > 8.0 microg/mL, with gram-negative organisms being more sensitive than gram-positive organisms. Orbifloxacin was uniformly absorbed in the 6 mares and was well distributed into body fluids and endometrial tissue. At a dosage of 7.5 mg/kg once a day, many gram-negative pathogens, such as Actinobacillus equuli, Escherichia coli, Pasteurella spp., and Salmonella spp. would be expected to be susceptible to orbifloxacin. 相似文献
7.
Body fluid and endometrial concentrations of ketoconazole in mares after intravenous injection or repeated gavage 总被引:1,自引:0,他引:1
After single oral administration of ketoconazole (30 mg/kg bodyweight [bwt]) in 50 ml of corn syrup to a healthy mare, the drug was not detected in serum. Ketoconazole in 0.2 N HC1 was administered intragastrically to six healthy adult horses in five consecutive doses of 30 mg/kg bwt at 12 h intervals. Ketoconazole concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid (CSF), urine and endometrium. Mean peak serum ketoconazole concentration was 3.76 micrograms/ml at 1.5 to 2 h after intragastric administration. Mean peak synovial concentration was 0.87 micrograms/ml 3 h after the fifth dose. Similarly, mean peritoneal concentration peaked 3 h after the fifth dose at 1.62 micrograms/ml. Mean endometrial concentrations peaked at 2.73 micrograms/ml 2 h after the fifth dose. Ketoconazole was detected in the CSF of only one of the six mares at a concentration of 0.28 micrograms/ml 3 h after the fifth dose. The highest measured concentration of ketoconazole in urine was 6.15 micrograms/ml 2 h after the fifth dose. A single intravenous injection of ketoconazole (10 mg/kg bwt) was given to one of the six mares; the overall elimination rate constant was estimated at 0.22/h and bioavailability after oral administration was 23 per cent. 相似文献
8.
Pharmacokinetics of difloxacin and its concentration in body fluids and endometrial tissues of mares after repeated intragastric administration 下载免费PDF全文
Aric R. Adams Gregory R. Haines Murray P. Brown Ronald Gronwall Kelly Merritt 《Canadian journal of veterinary research》2005,69(3):229-235
Pharmacokinetics of difloxacin and its distribution within the body fluids and endometrium of 6 mares were studied after intragastric (IG) administration of 5 individual doses. Difloxacin concentrations were serially measured in serum, urine, peritoneal fluid, synovial fluid, cerebrospinal fluid, and endometrium over 120 h. Bacterial susceptibility to difloxacin was determined for 174 equine pathogens over a 7-month period. Maximum serum concentration (Cmax) was 2.25 +/- 0.70 microg/mL at 3.12 +/- 2.63 h and Cmax after the 5th dose was 2.41 +/- 0.86 microg/mL at 97.86 +/- 1.45 h. The mean elimination half-life (t(1/2)) was 8.75 +/- 2.77 h and area under the serum concentration versus time curve (AUC) was 25.13 +/- 8.79 microg h/mL. Highest mean synovial fluid concentration was 1.26 +/- 0.49 microg/mL at 100 h. Highest mean peritoneal fluid concentration was 1.50 +/- 0.56 microg/mL at 98 h. Highest mean endometrial concentration was 0.78 +/- 0.48 microg/g at 97.5 h. Mean cerebrospinal fluid concentration was 0.87 +/- 0.52 microg/mL at 99 h. Highest mean urine concentration was 92.05 +/- 30.35 microg/mL at 104 h. All isolates of Salmonella spp. and Pasteurella spp. were susceptible. In general, gram-negative organisms were more susceptible than gram-positives. Difloxacin appears to be safe, adequately absorbed, and well distributed to body fluids and endometrial tissues of mares and may be useful in the treatment of susceptible bacterial infections in adult horses. 相似文献
9.
Papich MG Van Camp SD Cole JA Whitacre MD 《Journal of veterinary pharmacology and therapeutics》2002,25(5):343-350
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria. 相似文献
10.
Chakwenya J Lakritz J Tyler J Fales WH James-Kracke M Smith K Holle J 《Journal of veterinary pharmacology and therapeutics》2002,25(5):321-327
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas. 相似文献
11.
Pharmacokinetics of ceftriaxone in mares 总被引:1,自引:0,他引:1
12.
The objectives of this study were to determine the pharmacokinetics and tissue concentrations of doxycycline after repeated intragastric administration, and to determine the minimum inhibitory concentrations (MIC) for equine pathogenic bacteria. In experiment 1, 2 mares received a single intragastric dose of doxycycline hyclate (3 mg/kg bwt). Mean peak serum concentration was 0.22 microg/ml 1 h postadministration. In experiment 2, 5 doses of doxycycline hyclate (10 mg/kg bwt), dissolved in water, were administered to each of 6 mares via nasogastric tube at 12 h intervals. The mean +/- s.e. peak serum doxycycline concentration was 0.32+/-0.16 microg/ml 1 h after the first dose and 0.42+/-0.05 microg/ml 2 h after the fifth dose. The mean trough serum concentrations were > 0.16 microg/ml. Highest mean synovial concentration was 0.46+/-0.13 microg/ml and highest mean peritoneal concentration was 0.43+/-0.07 microg/ml, both 2 h after the fifth dose. Highest urine concentration was mean +/- s.e. 145+/-25.4 microg/ml 2 h after the last dose. Highest endometrial concentration was mean +/- s.e. 1.30+/-0.36 microg/ml 3 h after the fifth dose. Doxycycline was not detected in any of the CSF samples. Mean +/- s.e. Vd(area) was 25.3+/-5.0 l/kg and mean t1/2 was 8.7+/-1.6 h. In experiment 3, minimum inhibitory concentrations of doxycycline were determined for 168 equine bacterial culture specimens. The MIC90 was < or = 1.0 microg/ml for Streptococcus zooepidemicus and 0.25 microg/ml for Staphylococcus aureus. Based on drug concentrations achieved in the serum, synovial and peritoneal fluids and endometrial tissues and MIC values determined in the present study, doxycycline at a dose of 10 mg/kg bwt per os every 12 h may be appropriate for the treatment of infections caused by susceptible (MIC < 0.25 microg/ml) gram-positive organisms in horses. 相似文献
13.
14.
Colitz CM Latimer FG Cheng H Chan KK Reed SM Pennick GJ 《American journal of veterinary research》2007,68(10):1115-1121
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses. 相似文献
15.
Latimer FG Colitz CM Campbell NB Papich MG 《American journal of veterinary research》2001,62(10):1606-1611
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses. 相似文献
16.
K W Hinchcliff S M McGuirk P S MacWilliams 《American journal of veterinary research》1987,48(8):1256-1260
Pharmacokinetics of phenolsulfonphthalein (PSP) in horse and pony mares was determined after injection of 1 mg/kg of body weight, IV. A plasma PSP concentration vs time curve was described adequately in horses and ponies by an open, 2-compartment model. There were significant differences in the elimination phase parameters, apparent volume of distribution at steady state, and apparent volume of distribution of horses and ponies. The harmonic mean elimination half-life of PSP in horses was significantly longer (P less than 0.001) than that in the ponies (16.4 and 10.0 minutes, respectively). The mean plasma clearance of PSP in horses was significantly (P less than 0.05) less than that in ponies (0.00554 and 0.00701 L/min/kg, respectively). There was no difference between horses and ponies in the metabolic clearance of PSP. The fraction of the administered dose of PSP excreted in the urine in the first 15 minutes was not significantly different between horses and ponies. 相似文献
17.
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%. 相似文献
18.
M P Brown R R Gronwall N Pattio P W Poulos A E Houston 《American journal of veterinary research》1991,52(9):1438-1440
Six calves with suppurative arthritis were given a single IM injection of sodium cephapirin at a dosage of 10 mg/kg of body weight. Cephapirin concentrations were serially measured in serum and in normal and suppurative synovial fluid over a 24-hour period. Mean peak serum concentration was 6.33 microliters/ml at 20 minutes after injection. The highest cephapirin concentrations in normal and suppurative synovial fluid were 1.68 and 1.96 micrograms/ml, respectively, 30 minutes after injection. Overall mean cephapirin concentration in normal synovial fluid for the first 4 hours (1.04 +/- 0.612 micrograms/ml) was not significantly different from that in suppurative synovial fluid (0.88 +/- 0.495 micrograms/ml; P greater than 0.05). Elimination half-life was 0.60 hours and clearance was 1,593 ml/h/kg. 相似文献
19.
Womble AY Giguère S Lee EA Vickroy TW 《American journal of veterinary research》2006,67(10):1681-1686
OBJECTIVE: To determine pharmacokinetics of clarithromycin and concentrations in body fluids and bronchoalveolar (BAL) cells of foals. ANIMALS: 6 healthy 2-to 3-week-old foals. PROCEDURES: In a crossover design, clarithromycin (7.5 mg/kg) was administered to each foal via IV and intragastric (IG) routes. After the initial IG administration, 5 additional doses were administered IG at 12-hour intervals. Concentrations of clarithromycin and its 14-hydroxy metabolite were measured in serum by use of high-performance liquid chromatography. A microbiologic assay was used to measure clarithromycin activity in serum, urine, peritoneal fluid, synovial fluid, CSF, pulmonary epithelial lining fluid (PELF), and BAL cells. RESULTS: After IV administration, elimination half-life (5.4 hours) and mean +/- SD body clearance (1.27 +/- 0.25 L/h/kg) and apparent volume of distribution at steady state (10.4 +/- 2.1 L/kg) were determined for clarithromycin. The metabolite was detected in all 6 foals by 1 hour after clarithromycin administration. Oral bioavailability of clarithromycin was 57.3 +/- 12.0%. Maximum serum concentration of clarithromycin after multiple IG administrations was 0.88 +/- 0.19 microg/mL. After IG administration of multiple doses, clarithromycin concentrations in peritoneal fluid, CSF, and synovial fluid were similar to or lower than concentrations in serum, whereas concentrations in urine, PELF, and BAL cells were significantly higher than concentrations in serum. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of clarithromycin at 7.5 mg/kg every 12 hours maintains concentrations in serum, PELF, and BAL cells that are higher than the minimum inhibitory concentration (0.12 microg/mL) for Rhodococcus equiisolates for the entire 12-hour dosing interval. 相似文献
20.
Flurbirpofen (FBP), a member of the 2-aryl propionate nonsteroidal anti-inflammatory drug class, has potent anti-inflammatory and analgesic properties. The commercial preparation is a racemic mixture of the R(-) and S(+) enantiomers of FBP. In this study, R(-) and S(+) FBP were used to investigate the metabolic chiral inversion. Each enantiomer was administered separately (0.25 mg/kg) and in a racemic mixture (0.5 mg/kg) intravenously to horses. Plasma and synovial concentration of each enantiomer was determined and the disposition of each was analyzed. After intravenous administration of R(-) FBP and S(+) FBP to horses no chiral inversion was detected. After the administration of the FBP racemate and individual enantiomers no differences were observed between pharmacokinetic parameters [t(1/2beta) (h), Cl (L/h.kg), AUC (microg.h/mL), Vss (L/kg) and MRT (h)] for R(-) and S(+) FBF. Synovial fluid concentrations of both FBP enantiomers were lower than plasma concentrations and no stereoselective differences were detected. These data indicate that the disposition of FBF in horses is not enantioselective and demonstrate a difference in the pharmacokinetic behavior of the enantiomers as compared with other 2-aryl-propionic acids, such as carprofen, ketoprofen and vedaprofen in the horse. 相似文献