首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
果园柔性对靶喷雾装置设计与试验   总被引:2,自引:8,他引:2  
为确定果园柔性对靶喷雾装置的喷雾控制策略,并测定对应方式下不同树冠直径的雾滴沉积率,该文使用自制的果园柔性对靶喷雾机样机,用连续喷雾方式以及3种不同控制方式的对靶喷雾对株距为4 m、树高为1.7 m、树冠直径为1.1 m的模拟靶标进行了喷雾试验,测定了对应方式下的靶标上的雾滴沉积率。试验结果表明,连续喷雾方式下的雾滴沉积率为40.3%;3种对靶喷雾方式下的雾滴沉积率分别为50.4%、77.8%、86.0%,均高于连续喷雾方式下的雾滴沉积率,由此选定了对靶喷雾方式Ⅲ作为果园柔性对靶喷雾装置的喷雾控制策略。在对靶喷雾方式Ⅲ控制策略下,对株距为4 m、树高为1.7 m、树冠直径为2.1 m的模拟靶标进行了对靶喷雾试验,测得其雾滴沉积率为88.4%;同时发现无靶标区域内的雾滴沉积量明显小于模拟靶标区域,雾滴沉积的对靶特性明显;在模拟树冠中间区域的雾滴沉积量均高于模拟树冠边缘区域,符合实际果树树冠对药液的需求。该研究为进一步提高柔性对靶喷雾装置的雾滴沉积率和优化其喷雾技术参数提供参考。  相似文献   

2.
果园喷雾机自动对靶喷雾控制系统研制与试验   总被引:2,自引:11,他引:2  
为提高农药利用率,减少环境污染,该文针对中国果园机械化作业条件差和传统果园喷雾机连续喷雾时存在果树间空隙无效喷雾的特点,设计了自动对靶喷雾控制系统,该系统以GY8履带自走式果园喷雾机为载体,采用传感器测距方式探测果树,实现自动对靶喷雾。通过对超声波、红外和激光3种传感器进行性能比较,及对超声波和激光2种传感器进行静态识别间距测试与分析,红外传感器受光强影响较大,超声波传感器识别间距超过800 mm,均不满足果园精确对靶喷雾控制要求,激光传感器静态识别间距只有20 mm,具有工作稳定、响应快速、方向性好等特点,故将激光传感器选为自动对靶喷雾机探测装置,并将激光传感器安装于喷头组件前方220 mm。采用连续3次检测靶标判别法设计了自动对靶喷雾系统,该系统可有效避免因激光光束较细而导致的将树冠内空洞、枝间间隙等误判为果树间空隙而出现的电磁阀频繁启闭动作。行驶速度为0.5 m/s时,自动对靶喷雾控制系统的动态靶标识别间距介于100~150 mm之间,行驶速度1.0 m/s时,动态靶标识别间距为200~250 mm。此外,该系统还具有提前及延后喷雾功能,自动对靶喷雾系统提前靶标95.0~157.5 mm距离开始喷雾,离开靶标100 mm距离停止喷雾,使喷雾完全覆盖整个树冠。与连续喷雾相比,对靶喷雾可有效节省施药量,对于空隙比为20.0%、35.2%、52.9%靶标行枣树,行驶速度为0.5 m/s时省药率分别达27.9%、53.7%、76.9%,行驶速度为1.0 m/s时省药率分别达27.3%、54.5%、81.0%。因此,该自动对靶喷雾系统对稀疏果园的精确对靶病虫害防治具有较好的实用价值。  相似文献   

3.
基于超声波传感器和DGPS的果树冠径检测   总被引:7,自引:5,他引:7  
为实现果园果树的仿形精确喷雾,适时获取果树冠径信息,采用超声波传感器,GPS接受机和电子罗盘等在拖拉机上建立了一套果树冠径检测试验系统。并在室外对5个圆柱规则外形树冠进行了检测试验。试验分别采用4种树冠直径检测计算方法,并选择0.31 m/s和0.65 m/s两种不同拖拉机行驶速度进行检测。采用误差分析的方法检验果树冠径检测系统的实际检测效果。误差分析表明拖拉机分别以0.31 m/s和0.65 m/s速度行驶时,应用超声波探测果树树冠两个轮廓边缘计算5个树冠直径的平均相对误差分别为5.54%和5.80%。用电子罗盘和DGPS数据进行加权平均融合修正拖拉机行驶轨迹,由超声波检测到的果树两个轮廓边缘的位置信息计算果树直径,在两种检测速度下的平均相对误差为14.38%。研究结果为果树仿行喷雾控制和果园果树生长信息采集提供了技术方法。  相似文献   

4.
针对传统的轴流式果园弥雾机在葡萄园作业时,喷药量分配不均匀、农药大量浪费的现象,研制了一种以小四轮拖拉机为动力源,适用于葡萄园作业的立管风送式喷雾机。该立管风送式喷雾机通过设置在拖拉机变速箱左侧的变速取力器把拖拉机的动力传递给后方的柱塞泵和离心风机,离心风机吹出的气流,通过固定在竖直喷架两侧的风筒出风口高速吹出,这不仅防止了雾滴的飘移,而且二次雾化了雾滴,增加了雾滴在葡萄冠层间的穿透性。利用室内试验和样机田间试验测试了该立管风送式结构的防飘、二次雾化功能以及雾滴在树冠中的附着率,结果表明:在自然风速为3.5和4.5m/s,风管出风口风速为30和35m/s的条件下,立管风送辅助喷雾技术能够有效地减少雾滴的飘失,雾滴体积中值直径在150μm以下,雾滴扩散比在0.74以上,二次雾化性能良好;在喷头距离植株30cm,拖拉机前进速度为1.5m/s,柱塞泵压力为0.25MPa、风机转速为2500r/min时,树体内部枝叶正反面雾滴附着率分别为70.2%和30.2%,树膛外部枝叶正反面附着率分别为85.6%和49.3%,满足葡萄园喷雾标准的要求。  相似文献   

5.
植保无人机(Unmanned Aerial Vehicle,UAV)果树飞防植保作业中飞行高度较高并且采用低容量细小雾滴喷雾,飘移风险极高。但是,无人机果园施药雾滴飘移特性研究尚处于初步开展阶段,缺乏全方位综合测试方法以及对不同无人机机型和喷头类型的评价。该研究在前期研究基础上,提出一种基于仿真果园试验台的植保无人机果园施药雾滴飘移测试方法,设计并制作仿真葡萄园试验台和空中飘移收集装置,结合地面飘移收集装置和冠层沉积收集带,首次通过雾滴空间飘移指数ADX定量分析评价不同机型的喷雾过程中农药雾滴空间飘移特性,并采用田间近地飘移测试平台进行无人机喷雾飘移试验,使用荧光示踪法探究4种典型植保无人机(油动单旋翼、电动6旋翼及2种电动8旋翼无人机)分别搭载IDK 120-015空气射流喷头和TR 80-0067空心圆锥喷头喷雾作业的雾滴冠层沉积分布、地面飘移、近地飘移及空中飘移特性,进而对不同喷雾飘移测试收集装置进行评估。结果表明:在侧风速2.2~3.6 m/s,温度29.8~34.3℃,相对湿度10.7%~30.6%的环境条件下,IDK空气射流喷头在作业高度1.5 m、速度2.0 m/s参数下可显著降低无人机喷雾下风向飘移水平,优化沉积分布均匀性,提高农药雾滴利用率;4种机型飘移特性无显著差异,旋翼下洗气流产生的卷扬涡流是影响无人机喷雾飘移的重要因素;葡萄园喷雾作业缓冲区至少应设置为15 m;冠层沉积率越小(P0.05,r0)、沉积分布变异系数越高(P0.01,r0)、田间飘移平台平均均值飘移率和90%累积飘移距离越大(P0.01,r0)以及ADX值越大(P0.01,r0)均表明雾滴飘移风险越高,3种收集装置及其评价指标均可有效评估下风向飘移特性;植保无人机喷雾飘移率与下风向距离满足指数函数关系。研究结果以期为新型果树专用植保无人机研发、植保无人机果园作业喷雾飘移测试方法的标准制定和田间作业参数选择提供参考和数据支持。  相似文献   

6.
为了实现自主导航拖拉机离开卫星定位系统时能够持续可靠工作,该文提出了基于三目视觉的拖拉机行驶轨迹预测方法。该方法将三目相机分解为长短基线2套双目视觉系统分时独立工作。通过检测相邻时刻农业环境中同一特征点的坐标变化反推拖拉机在水平方向上的运动矢量,并通过灰色模型预测未来时刻的运动矢量变化,最终建立不同速度下的前进方向误差模型。试验结果表明:拖拉机行驶速度为0.2 m/s时,46.5 s后前进方向误差超过0.1 m,对应行驶距离为9.3 m。行驶速度上升到0.5 m/s时,该时间和行驶距离分别降低到17.2 s和8.6 m。当行驶速度上升到0.8 m/s时,该时间和距离分别快速降低至8.5 s和6.8 m。行驶速度越高,前进方向误差增速越高。该方法可用于短时预测拖拉机的行驶轨迹,为自主导航控制提供依据。  相似文献   

7.
梨树风送喷雾关键作业参数优化与试验   总被引:2,自引:1,他引:2  
针对目前不同叶面积体密度果树风送喷雾关键作业参数设置缺少可操作性依据,该文通过叶面积体密度、出口风速、穿透距离对雾滴在树冠中的穿透率、沉积率及飘移率的影响试验,并以穿透率、沉积率和飘移率为评价指标,分析得出不同叶面积体密度果树喷雾的最佳出口风速。同时,根据叶单位面积所需药量标准,提出了估算喷雾机行驶速度的方法,从而优化了梨树风送喷雾的关键作业参数。该文还在试验基础上,建立了树冠内的雾量衰减模型。经检验,雾量衰减模型决定系数R2在0.90以上,平均预测误差在20%以内,有较高预测精度,能较好地预测树冠内各点雾量的分布,可对出口风速、行驶速度等参数的优化作进一步的定量分析。该文为实际喷雾作业参数的优化设置提供了参考。  相似文献   

8.
不同侧风和静电电压对静电喷雾飘移的影响   总被引:1,自引:2,他引:1  
为研究不同侧风和静电电压对静电喷雾雾滴飘移的影响规律,设计不同侧风(恒速风1、2、4 m/s及0~4 m/s变化的模拟自然风)及静电电压(0,2,4,6,8 k V),进行喷杆式静电喷雾机的雾滴飘移试验,测定不同静电电压下的雾滴粒径与荷质比,并对比分析雾滴飘移质量中心距和飘失率。结果表明:随着静电电压的增大,雾滴粒径减小,雾滴荷质比增大,0~8 k V电压下电极干燥和电极打湿对雾滴荷质比没有显著影响。在侧风风速为1 m/s时,0~8 k V静电喷雾的雾滴飘移中心距小于0.55 m,雾滴飘失率低于15%。在侧风风速2 m/s时,非静电喷雾的雾滴飘失率为11.9%,6~8 k V静电喷雾的雾滴飘失率超过20%,其中静电电压8 k V的雾滴飘失率(23.9%)比非静电喷雾增加100.8%。在侧风风速4 m/s时,4~8 k V静电喷雾的雾滴飘移中心距在0.9 m以上,雾滴飘失率在30%以上,其中静电电压8 k V下的雾滴飘移中心距为967.2 mm比非静电喷雾下增加了13.7%,雾滴飘失率为35.4%比非静电喷雾下增加了59.5%。相同静电电压下,2 m/s的恒速风和0~4 m/s变化的模拟自然风之间对雾滴飘失率无显著差异。该研究为优化喷雾技术参数和提高雾滴抗飘移的能力提供参考。  相似文献   

9.
针对喷雾高度影响大田对靶喷雾准确性问题,该研究设计了融合喷雾高度的大田蔬菜对靶喷雾系统,适用于株间距大、冠层尺寸小的作物。介绍了大田蔬菜对靶喷雾系统的结构组成及工作原理,根据对靶喷雾作业环节的滞后特性,建立对靶喷雾滞后模型,提出融合靶标位置、靶标大小、喷雾机作业速度和喷雾高度的对靶喷雾控制方法,基于C37控制器设计了稳压喷雾系统和对靶喷雾控制系统,并进行试验验证。不同喷雾高度对靶试验结果表明,在作业速度为0.52 m/s的情况下,融合喷雾高度的对靶喷雾平均绝对误差和均方根误差分别不高于3.63和4.26 cm,比未融合喷雾高度的平均绝对误差平均减小4.30 cm,均方根误差平均减小4.57 cm,有效喷施率不低于92.6%,验证了融合喷雾高度对靶喷雾的可行性。田间试验结果表明,随着作业速度的增加,对靶喷雾有效喷施率和平均有效覆盖率下降。在作业速度不大于0.49 m/s时,对靶喷雾有效喷施率为93.5%,平均有效覆盖率为80.2%。较于连续喷雾方式,对靶喷雾节药率可达33.8%,可满足大田株间距大、冠层尺寸小的作物对靶植保作业需求。  相似文献   

10.
油动单旋翼植保无人机雾滴飘移分布特性   总被引:14,自引:9,他引:5  
为了研究油动单旋翼植保无人机在精准作业参数(速度、高度)条件下的雾滴飘移分布特性,该文建立了雾滴飘移收集测试平台,分别用雾滴飘移测试框架、等动量雾滴收集装置和培养皿收集3WQF80-10型油动单旋翼植保无人机在作业时空中及地面飘移的雾滴。将测试结果分别与侧风风速、飞行高度、飞行速度进行相关分析和回归分析,结果表明:在平均温度31.5℃、平均相对湿度34.1%的条件下,侧风风速为雾滴飘移的主要影响因素;侧风风速与等动量雾滴收集器和培养皿测得的雾滴飘移率呈正相关(相关系数r分别为0.97、0.93);而与雾滴飘移测试框架测得的雾滴飘移率无相关性;侧风风速为0.76~5.5 m/s时,90%飘移雾滴沉降在喷雾区域下风向水平距离9.3~14.5 m的范围内,因此在作业时要预留至少15 m以上缓冲区(安全区)以避免药液飘移产生的危害。研究结果可为低空低量植保无人机施药技术研究和建立植保无人机低空低量施药田间雾滴沉积与飘移测试标准提供参考。  相似文献   

11.
丘陵山地柑橘果园多方位自动喷药装置研制   总被引:5,自引:5,他引:0  
针对现有自动喷药装置对丘陵山地不同树冠大小的柑橘果树适应性差的问题,该文设计了一种双向多方位自动喷药装置。通过模式转换机构,实现竖直喷药模式、45°倾斜喷药模式和对地喷药模式的任意切换,以满足喷药装置对不同大小柑橘树的适应性需求,提高农药的利用率。采用自动对靶模块检测果树冠层高度和高压雾化喷头组件至冠层表面距离;采用车速测定模块实时检测履带式手扶拖拉机行进速度。室内试验结果表明:在3种喷药工作模式下,装置射程与喷幅均符合植保机械作业质量要求;单次喷药量为72~190 L/hm2,符合低剂量喷药要求;超声波传感器布置在喷杆前方0.8 m处,当履带式手扶拖拉机行驶速度3~8 km/h时,有效降低了信号检测与处理滞后带来的对靶误差,对靶精度为99.7%,符合设计要求。田间试验结果表明:在竖直喷药模式和45°喷药模式下进行喷药工作,柑橘树冠层表面雾滴平均覆盖率分别为82.5%和78.7%,沉积密度分别为109滴/cm2和106滴/cm2;冠层内部雾滴平均覆盖率分别为16.1%和30.6%,沉积密度分别为35滴/cm2和64滴/cm2,喷药效果满足国家标准要求。  相似文献   

12.
考虑自然风的气辅式喷雾雾滴飘失特性建模与补偿   总被引:1,自引:1,他引:0  
气流辅助喷雾在雾滴减飘方面确有效果,然而大田作业时,其减飘效果受到自然风、喷雾流量、风筒出口风速、喷雾角等多种工况的严重影响。该文采用多相流计算流体动力学软件,建立三维流场几何模型,依据不同工况参数对雾滴漂移特性的影响,利用均匀设计安排试验方案,研究雾滴在自然风、辅助气流综合作用下在连续相和雾滴粒子离散相的耦合规律,通过流体动力学仿真完成训练样本采集,采用多元相关向量机回归方法建立不同自然风速下减飘模型,并通过模糊决策支持系统对作物茂密程度和喷嘴与冠层间垂直距离进行控制参数修正。试验结果表明:多元相关向量机回归模型预测飘失率的平均绝对百分比误差为2.56%,自然风扰动中实测和预测飘失率平均误差为8.92%,其飘失规律与所建飘失模型基本吻合。研究结果可为面向雾滴沉积效果的喷雾主动控制系统设计提供参考。  相似文献   

13.
3WQ-400型双气流辅助静电果园喷雾机设计与试验   总被引:5,自引:3,他引:2  
为解决农药雾滴难以沉积到果树叶片背面,克服荷电雾滴荷电量在环境空间中快速衰退的难题。该文提出双气流辅助系统与静电喷雾系统相结合的方法,以拖拉机动力输出轴为液压传动系统动力源,研制了牵引式双气流辅助静电果园喷雾机。试验结果表明,19 kW 的拖拉机动力配置可以满足系统动力要求,轴流风机和离心风机的转速分别为1400、1800 r/min 可以满足所选试验对象对气流速度的要求;单个喷头喷出的雾滴在0.2 m 处的荷质比为1.0 mC/kg,且在喷雾距离为1.8 m 处依然带电;风送喷雾系统的垂直雾量分布规律、气流速度分布规律与纺锤型果树生物量分布规律相一致,其最大雾量与气流速度均出现在0.5~1.5 m 范围内;在施药量为3.5 L/min,作业速度为0.84 m/s 条件下,单侧喷雾时果树叶片正反面雾滴覆盖密度分别为115和47个/cm2,可以满足防治害虫的要求;冠层前部静电喷雾雾滴覆盖密度比非静电喷雾提高了20%,而冠层后部雾滴覆盖密度仅提高了7.2%。该研究为风送静电喷雾机设计与使用提供了参考。  相似文献   

14.
基于Smith-模糊PID控制的变量喷药系统设计及试验   总被引:11,自引:7,他引:4  
为实现精准变量喷药技术,该文设计了旁路节流式变量喷药控制系统用于变量喷药和幅宽调节控制,运用流体网络理论建立系统的数学模型,将模糊PID控制与基于喷药流体网络模型的Smith预估控制结合起来喷药量的调节,并对国产3W-250型喷杆喷雾机进行改造并构建喷药试验平台。试验结果表明,基于喷药流体网络模型的Smith-模糊PID控制算法的动态响应更快,降低了变量喷药系统滞后性和非线性的不利影响,超调量小于13.1%,稳态误差小于3.52%,且具有较好的适应能力和鲁棒性,为精准变量喷药控制提供一种实现方法。  相似文献   

15.
为提高果园轻型机动喷雾机的作业性能,设计了一种果园在线混药型静电喷雾机,进行了混药均匀性与稳定性试验和静电喷雾沉积试验。试验测得混药均匀性和混药稳定性的最大变异系数分别为4.46%和3.51%。采用风辅静电喷雾方式的无冠层采样架上采样点正面的雾滴附着率相对于无风辅无静电喷雾方式分别提高了9.3%、46.3%和53.2%,采样点反面的雾滴附着率分别提高了82.9%、164.3%和184.2%。风辅静电喷雾下在仿真柑橘树冠层内部叶片正面的雾滴附着率为48个/cm2左右,叶片反面为37个/cm2,相对于无风辅无静电方式分别提高了166.7%和428.6%。试验结果表明:所设计的在线混药系统具有良好的混药性能,风辅静电式喷雾系统可提高雾滴吸附能力和穿透能力,能够满足25个/cm2的病虫害防治附着率要求。该研究为果园喷雾机的机构设计和性能优化提供参考。  相似文献   

16.
AS350B3e直升机航空喷施雾滴飘移分布特性   总被引:4,自引:3,他引:1  
为了探究安装有AG-NAV Guía系统的AS350B3e直升机进行喷施作业时的雾滴飘移规律,以轻型机载北斗RTK差分系统获取的精准作业参数(时间、速度、高度、轨迹)为参考,进行了不同作业参数喷施试验。研究了该直升机以4种不同飞行速度范围进行单向式喷施作业时,对应的有效喷幅区域范围及雾滴飘移分布规律,对比了添加航空助剂对雾滴飘移距离及飘移量的影响。结果表明:有效喷幅区域的位置受自然风速和风向变化的影响,会向直升机航线下风向区域有不同程度的偏移;当直升机分别以70、90、100、120 km/h 4种速度参数进行喷施作业时,随着飞行速度的增大,有效喷幅宽度呈现先缓慢增大后急剧减小的趋势,100 km/h的飞行速度为有效喷幅宽度变化的峰值拐点;当侧风风速为1.1~2.3 m/s时,目标喷雾区的最小宽度在喷雾区域下风向水平距离27.61~48.94 m的范围内,且下风向受飘移影响距离均接近或小于下风向有效喷幅宽度,同时研究还发现雾滴粒径在200μm以下的雾滴更容易发生飘移,因此在作业时要预留至少50 m以上缓冲区(安全区)并合理选择航空喷头以避免药液飘移产生的危害;航空助剂的使用对于雾滴飘移量减轻效果显著,在同等作业条件下,添加航空助剂能够使雾滴飘移量减少33.94%。该研究结果可为直升机的喷施系统性能改进提供参考,对合理喷施农药、减少飘移、提高农药利用率具有重要意义。  相似文献   

17.
植保无人机施药喷嘴的发展现状及其施药决策   总被引:8,自引:4,他引:4  
农药的低利用率是影响农业生态环境和农产品品质安全的重要原因之一,优化农药喷施技术是提高农药利用率的有效手段。无人机植保喷施作业作为航空施药领域的重要组成部分,因其应对突发灾害能力强、不受作业地点限制等优势,具有巨大的发展潜力。喷嘴作为植保无人机喷施系统中的关键部件,主要分为液力雾化喷嘴和离心雾化喷嘴两大类,良好的喷嘴性能能够大大提升航空施药喷洒的均匀性,提高农药的利用效率。该文总结了各类植保无人机常用喷嘴的原理、特点以及应用场合,提出了喷嘴性能评价指标并总结了三大类常用的雾滴粒径、沉积量、分布、速度等指标的测量手段,包括雾滴收集方法,雾滴沉积量测试方法以及仪器测量法。最后,针对目前无人机施药缺乏专业的指导,农药喷施效果有待提升的现状,该文提出合理的施药决策是结合靶标作物、喷药需求以及喷施环境三方面因素共同作用的结果,并从喷嘴喷雾角、防堵塞性、喷嘴压力与流量以及最佳作业粒径4个方面分析了喷嘴选型的思路,从专业喷嘴选型决策系统的建立以及无人机植保专用喷嘴的研发两方面对今后的研究进行展望。  相似文献   

18.
为了获得GP-81A系列航空喷头的雾滴粒径分布情况,该文针对GP-81A系列航空喷头进行了风洞条件和飞行条件下的雾滴粒径及分布测试,通过高速风洞测试系统模拟飞行时产生的高速气流开展了气流大小对雾滴粒径及分布的影响研究;基于农用航空常用的Y5B飞机开展了不同型号喷嘴航空喷雾时的雾滴粒径及分布研究;同时,比较了相近喷雾压力条件下,相同喷嘴在风洞条件和飞行条件下的雾滴粒径及分布差距。试验结果表明,风洞条件测试时,当风速小于33.8 m/s时,雾滴粒径随气流的增加而增大;而当风速大于33.8 m/s时,雾滴粒径随气流的增加而减小,足够大的气流可以使雾滴进一步雾化。当气流在33.8 m/s时,7#喷嘴雾滴粒径最大,为491.1μm;当气流在84.87 m/s时,2#喷嘴雾滴粒径最小,为202.1μm。该系列喷头的6种不同喷孔的喷头的雾滴粒径均大于150μm,说明该喷头航空喷雾时的飘移损失较小。在喷雾压力基本相同的条件下,风洞条件下的雾滴粒径测试结果略高于飞行试验结果,主要原因是距离喷头出口的测试位置不同。风洞条件和飞行条件下的雾滴谱相对宽度S值均较小,表明雾滴分布较均匀,而飞行条件下的雾滴分布更均匀些。该研究为进一步优化航空喷头的作业参数,开展减少雾滴飘移研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号