首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. This study quantified impacts of systematic removal of corn stover on soil hydraulic parameters after 1 year of stover management under no-till (NT) systems. These measurements were made on three soils in Ohio including Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also assessed. Earthworm middens, Ksat, bulk density (ρb), soil water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments. Stover treatments consisted of removing 0 (T100), 25 (T75), 50 (T50), 75 (T25), 100 (T0) and adding 100 (T200)% of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha−1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka, and increased ρb at all sites (P < 0.01). Compared to normal stover treatment (T100), complete stover removal (T0) reduced earthworm middens 6-fold at Coshocton and about 14-fold at Hoytville and Charleston. Geometric mean Ksat decreased from 3.1 to 0.1 mm h−1 at Coshocton, 4.2 to 0.3 mm h−1 at Hoytville, and 4.2 to 0.6 mm h−1 at Charleston while soil ρb increased about 12% in the 0–10-cm depth at Coshocton and Hoytville from T100 to T0. The SWR for T0 was about 70% of that for T100 and 58% of that for T200 at 0 to −6 kPa suctions across sites. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Differences in the number of middens, ρb, SWR, Ksat, and ka between T100 and T200 were not generally significant although the T200 retained slightly more water for the 0 to −100 kPa at Charleston and had higher ka at Hoytville compared to T100. Measured parameters were strongly correlated, and ka was a strong Ksat predictor. Stover harvesting induces rapid changes in soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal for soil-specific conditions.  相似文献   

2.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and surface cover management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of straw and plastic film management under contrasting tillage practices (no tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) which had been under conventional management for hundred of years in the northwestern Loess Plateau, China. Surface soil (0–10 cm) under no tillage with straw cover had the highest water stability of macro-aggregates (>250 μm) and the highest saturated hydraulic conductivity. Compared with straw cover, plastic film cover did not change macro-aggregate stability and the soil had the lowest saturated hydraulic conductivity (Ksat) but the highest % <50 μm soil particles. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indication the importance of the latter on soil structural development. No tillage on its own (without straw cover) was not sufficient to improve structural stability probably due to lack of organic carbon input. While use of plastic film cover might lead to short term yield increases, results indicated that it did little to improve soil physical fertility. On the other hand, no tillage with straw cover management should lead to long-term improvement of physical quality of this structurally fragile soil.  相似文献   

3.
Although biotic communities have long been recognized as important factors in soil development, especially of A horizons, few studies have addressed their influence on soil physical properties in nonagricultural settings. A biosequence of 50-year-old soils supporting near monocultures of Coulter pine (Pinus coulteri), scrub oak (Quercus dumosa), and chamise (Adenostoma fasciculatum) was used to determine the relative influence of vegetation type and associated soil organisms on the development of soil structural characteristics and water flow. Total porosity ranged from a high of 51% in the heavily worm-worked A horizon under oak to a low of 39% within the 35- to 50-cm depth under pine, where earthworms were absent. Macroporosity (pores with diameters >300 μm) was highest in the A horizon under oak (15.6%) and lowest under pine (9.5%). Saturated hydraulic conductivity of surface soils ranged from 10.8 cm h−1 under oak to 3.2 cm h−1 under pine. Soil under chamise, which had fewer earthworms than that under oak, had Ksat and bulk density values intermediate between oak and pine. Root and macrofauna distributions suggest that roots are the dominant factor in the development of macroporosity under pine, while earthworms have had the greatest effect under oak. Porosity has increased at an average rate of 0.22% per year in the 0- to 7-cm depth under oak (from 41% to 56%), but has not been significantly altered within the same depth under pine. Below the 7-cm depth, porosity values are similar for each vegetation type and the original parent material. Available water capacity (AWC) within the first 0- to 7-cm depth has increased from the original values (about 0.11 m3 m−3) to 0.17 m3 m−3 under oak, 0.16 m3 m−3 under chamise, and 0.13 m3 m−3 under pine. The data show that the presence of burrowing macrofauna, which is determined by litter palatability and therefore indirectly controlled by vegetation, can significantly influence porosity, increasing the water-holding capacity of a soil.  相似文献   

4.
Deep tillage that is used before vine plantation to remove old vine roots and loosen subsoil may induce physical soil degradation that could affect soil structure and vine water supply. The objective of the study was to experimentally evaluate the effect of deep tillage on soil structure. The impacts on soil structure of two deep tillage techniques, i.e. deep ploughing and ripper, and two contrasted soil water conditions were compared in a experimental field by combining morphological observations, bulk density and saturated hydraulic conductivity measurements. These three methods were found very complementary to analyse and discriminate the impact of the different treatments. The proportion of compacted zones and mean bulk density increased from the initial plot (0.15 m2 m−2, 1.45 Mg m−3) to a maximum in the case of the deep ploughing under wet conditions plot (0.60 m2 m−2, 1.60 Mg m−3). The main results showed that (i) a significant soil compaction was observed after wet conditions only, (ii) deep ploughing produced more soil compaction than ripper because of a greater volume of soil affected by wheeling in the former operation and (iii) a specific response of soils is significatively observed in the case of deep ploughing only with an increase of compacted zones fragmentation in relation to a decrease of clay content.  相似文献   

5.
Much of New Zealand's agriculture integrates animal and crop production on poorly drained, easily compacted soils. We hypothesized that soil properties affecting forage oat (Avena sativa, cv Awapuni) establishment on land compacted by 15 years of conventional cropping might be influenced by various subsoiling and surface tillage combinations. Plots on a Moutoa silty clay (Typic Haplaquoll) were paraplowed (P), deep subsoiled (V), shallow subsoiled (S), or were left as non-subsoiled controls (C). Subsequently, the surface 15 cm was surface-tilled (T) using a power rotary-tiller and firmed with a Cambridge roller or were not tilled (N). Oats were then sown with a cross-slot drill. Subsoiling greatly reduced soil strength. Cone indices showed disruption to 40 cm with P, 36 cm for V, and 30 cm for S. Approximately 60% of profile cone indices to a depth of 0.5 m from subsoiled treatments were less than 1.5 MPa, compared to approximately 30% for C. T slightly improved strength distribution in non-subsoiled controls but had little effect in subsoiled treatments. Subsoiling without T continued to show improved profile cone index cumulative frequency 233 days after subsoiling. Subsoiling after T in this high rainfall climate eliminated most of the separation in cumulative frequency of soil profile cone index values by two weeks after T. T reduced emergence from 142 to 113 plants per square meter and reduced yield from 5318 to 3679 kg ha−1. Forage yield increased from 3974 to 4674 kg ha−1 with subsoiling. Soil porosity, saturated and slightly unsaturated hydraulic conductivities (KSAT and K−40) and air permeability were highly variable but generally increased with subsoiling. Oxygen diffusion rate (ODR) (using Pt microelectrodes) was also variable, but N and C treatments had consistently lower ODRs than T or subsoiled treatments. Generally, subsoiling without T produced better soil conditions and oat crop performance than the prevailing New Zealand practice of T without subsoiling.  相似文献   

6.
Ilan Stavi  Rattan Lal   《CATENA》2011,84(3):148-155
Physical degradation of the soil increases its susceptibility to erosion by water action. However, relatively few studies have evaluated the opposite, i.e., the impact of water erosion on soil erodibility. This study was conducted in a corn field in Ohio. Some sites within the field have experienced water-induced soil erosion following heavy rainstorms. Physical characteristics of the soil were compared between eroded (ER) and un-eroded sites (UN). Compared with ER, the soil in UN had lower penetration resistance (4.87 vs. 4.53 MPa), bulk density (1.45 vs. 1.33 Mg m?3), and sand content (17.4 vs. 14.2%), and higher shear strength (80.1 vs. 125.3 KPa), hydraulic conductivity (3.0 vs. 3.4 cm h?1), intrinsic permeability (31.9 vs. 36.4 × 10?10 cm2), and contents of soil organic carbon (36.1 vs. 32.1 g kg?1), total nitrogen (3.3 vs. 3.1 g kg?1), clay (25.2 vs. 24.2%), silt (60.5 vs. 58.4%), and very fine sand (3.4 vs. 1.1%). Also Munsell's variables differed between ER and UN (1.24 vs. 0.54 for hue, 4.59 vs. 4.35 for value, and 1.99 vs. 1.79 for chroma, respectively). The erodibility factor (K) was lower in UN than in ER (0.00327 vs. 0.00354 Mg ha h ha?1 MJ?1 mm?1, respectively). Hence, it is suggested the ER sites within the corn field agroecosystem are more susceptible to accelerated erosion as compared with UN sites.  相似文献   

7.
Drainage, tillage, and intensive land use lead to drastic alterations in physical characteristics of organic soils. As decomposition and soil formation progress, bulk density (ρb) increases and total porosity (ft) decreases due to subsidence, shrinkage, and mineralization of soil organic matter (SOM). However, the rate of subsidence and the changes in soil properties differ among management systems. Thus, the objectives of this study were to determine the effects of different tillage practices on ρb and ft of cultivated peat soils. These experiments were conducted during 2004–2005, on Histosols in north central Ohio. Soil core samples were obtained from experimental plots managed with moldboard plow (MB), no-till (NT), or left bare (B). Conversion of plow tillage to NT increased ρb from 0.52 to 0.57 Mg m−3, and decreased ft from 0.72 to 0.70 m3 m−3.  相似文献   

8.
水质和体积质量对碱土饱和导水率和盐分淋洗的影响   总被引:3,自引:1,他引:3  
迟春明  王志春 《土壤》2009,41(6):992-997
以松嫩平原典型碱土为研宄对象,采用承压水、潜水及蒸馏水模拟的雨水3种水源,分别在6种体积质量(容重)下测定了土壤饱和导水率和淋洗液的电导率及pH,分析了水质和体积质量对碱土饱和导水率和盐分淋洗的影响以及饱和导水率与淋洗液电导率和pH值间的关系.结果表明:碱土饱和导水率随测定用水电导率的增加而升高;采用承压水和潜水测定时,碱土饱和导水率随土壤体积质量的增加而降低;采用蒸馏水测定时,饱和导水率在1.08~1.33 g/cm~3体积质量范围内均为0.11mm/d,而当体积质量>1.42g/cm~3时,饱和导水率均为0 mm/d;淋洗液的电导率和pH值随着测定用水电导率的逐渐增加而不断降低;采用潜水和承压水测定时,淋洗液的电导率和pH值随体积质量的增加而升高,用蒸馏水测定时,淋洗液的电导率和pH值不随体积质量的变化而改变;淋洗液电导率和pH均随饱和导水率增加而降低,且二者与饱和导水率均呈指数关系,碱土饱和导水率越高其盐分淋洗效果越好.  相似文献   

9.
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

10.
Changes to soil physical properties after grazing exclusion   总被引:3,自引:0,他引:3  
Abstract. The potential for degraded physical properties of soil to regenerate naturally after exclusion of grazing animals was examined at a long-term stocking rate trial near Armidale, New South Wales, Australia. Unsaturated hydraulic conductivity was measured before grazing was excluded, and after 7 months and 2.5 years' grazing exclusion. These data were compared with controls grazed at 10,15 and 20 sheep/ha. After 2.5 years, there were significant increases in unsaturated hydraulic conductivity at 5 and 15 mm tension in the ungrazed treatments compared with the grazed controls. The unsaturated hydraulic conductivities and bulk density of surface soils under pasture which had been ungrazed for 2.5 years were comparable to those where the pasture had been ungrazed for 27 years. We speculate that the natural amelioration of soil physical properties in these soils was due to biological activity and wetting and drying cycles, in the absence of the compactive effect of animal treading.  相似文献   

11.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

12.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

13.
Effects of diatomite on soil physical properties   总被引:1,自引:0,他引:1  
Organic and inorganic soil amendments are commonly added to soil for improving its physical and chemical characteristics which promote plant growth. Although many inorganic amendments are extensively used for this purpose, diatomite (DE) is not commonly used. This study was conducted to determine effects of diatomite applications (10, 20, and 30% v/v) on physical characteristics of soils with different textures (Sandy Loam, Loam, and Clay), under laboratory conditions. The results indicated that diatomite application protects large aggregate (> 6.4 mm) formation in clay-textured soils, however it reduced the mean weight diameter in sand-textured soil. 30% diatomite reduced mean weight diameter in sand-textured soils from 1.74 to 1.49 mm. Diatomite applications significantly increased aggregate stability of all the experimental soils in all aggregate size fractions. In overall, aggregate stability increased from 28.04% to 45.70% with the application rate of 30%. Diatomite application also significantly increased soil moisture content at field capacity in SL textured soil. 30% diatomite increased field capacity in sand-textured soil in the percent of 43.78 as compared with control. Therefore it is suggested that diatomite may be considered as a soil amendment agent for improving soil physical characteristics. However, its effectiveness in enhancing soil properties depends on initial soil factors and texture. Moreover, since its protective effect against large aggregate (> 6.4 mm) formation and reducing effect on soil penetration resistance in clay textured soils, diatomite might be an alternative soil amendment agent in soil tillage practices and seedling.  相似文献   

14.
Earthworms are important soil animals in grassland ecosystems and are considered to be important to soil quality. The overall impact of earthworms on soil properties and plant diversity, however, depends on earthworm species, functional group and the type of ecosystem. The primary purpose of this study was to document the relationship among earthworms, key soil properties and native and exotic plant diversity in the little studied, Palouse prairie grassland (Idaho, USA). A secondary objective was to determine the effectiveness of three methods commonly used to sample earthworms. A hillslope characterized by Palouse prairie vegetation, well-expressed, hummocky (mounded) topography and known to support both exotic and native earthworm species was selected for study. The hillslope was divided into three zones [annual-dominated (AD), mixed (MX) and perennial-dominated (PD)] based on characteristics of the inter-mound plant communities described in previous research. Total earthworm biomass in the MX zone (53.5 g m−2) was significantly greater than in the PD zone (14.7 g m−2) (P = 0.0384), but did not differ from the AD zone. Earthworm density ranged from 52 to 81.1 individuals m−2 but was not significantly different across zones. Total C and N at 0 to 10 and 30 to 50 cm depths were significantly greater in the AD and PD zones as compared to the same depths in the MX zone. Soil textural class was silt loam within all zones and the soil silt fraction was positively correlated with total exotic earthworm density (R = 0.783, P = 0.0125) and biomass (R = 0.816, P = 0.0072). Native earthworms were only found in the zone with the greatest total and native plant diversity (PD). Total soil C and N were not correlated to earthworm density, but soil total C and N were significantly negatively correlated with exotic plant density, which indicates that invasive plants may be decreasing soil total C (R = −0.800) and N (R = −0.800). Calculated earthworm densities using data from the electroshocker were generally lower than those based on the hand-sorting method. Electroshocking, however, created lower disturbance and was the only method that resulted in the collection of the deep-burrowing, native species Driloleirus americanus.  相似文献   

15.
The use of fire in rangeland management is standard practice, but the impact of fire frequency on soil physical properties is still not properly understood. In this study, the effect of fire frequency on selected physical properties was studied in a long-term burning experiment. Treatments included: no burn (control), sexennial, quadrennial, triennial, biennial and annual burns. A line intercept sampling technique was used to collect disturbed and undisturbed soil samples from the surface for analysis. Frequent burning significantly increased the aggregate stability and bulk density when compared to less frequent burning. Frequent burning resulted in lower hydraulic conductivities and water conducting macroporosity when compared to intermediate burning frequencies, likely due to lower organic carbon contents associated with frequent burning. Soil water repellency was the highest in quadrennial burned plots. The results indicate that frequent burning can have a detrimental impact on soil physical properties, but small variations in inherent soil properties (texture) have a more dominant effect on the physical properties than fire frequency management. The results emphasize the complexity related the effect of fire on soil properties and future work should include all environmental factors in order to derive sustainable burning frequencies for this site.  相似文献   

16.
选取水耕年限分别为2年、19年和>100年稻田,通过野外样品采集与室内分析相结合的方法,对比了稻田田内和田埂土壤物理性质与水-氮分布差异,揭示了水耕历史对稻田-田埂过渡区土壤物理性质与水-氮流失过程的影响机制。结果表明,耕作活动影响了稻田-田埂过渡区土壤容重、孔隙、土壤水分特征曲线和饱和导水率(Ks)等物理性质。随着水耕年限的增加,田内耕作层与田埂表土层、田内犁底层与田埂硬质层的容重差异增大;耕作层的中小孔隙(直径<0.03 mm)含量增加,其他土层的总孔隙和大孔隙(直径>0.3 mm和>0.03 mm)含量降低;田内土壤的Ks下降速度较田埂更快。在测定的吸力范围内(0~100 kPa),2年和19年的耕作层与表土层持水能力相近,而100年耕作层持水能力高于表土层;2年和100年的硬质层与犁底层持水能力相近,而19年硬质层持水能力更强;19年和100年田埂底土层持水能力较田内强。随着水耕年限增加,耕作层与表土层Ks差异减小,硬质层与犁底层Ks差异增加,2年、19年和100年硬质层的Ks分别是对应犁底层的1.10倍、6.90倍和6.32倍,100年田埂底土层的Ks...  相似文献   

17.
In view of their potential benefits, reduced or no tillage (NT) systems are being advocated worldwide. Concerns about impairment of some soil conditions, however, cast doubt on their unqualified acceptance. We evaluated the effects of 6 years of tillage and residue management on bulk density, penetration resistance, aggregation and infiltration rate of a Black Chernozem at Innisfail (loam, 65 g kg−1 organic matter, Udic Boroll) and a Gray Luvisol at Rimbey (loam, 31 g kg−1 organic matter, Boralf) cropped to monoculture spring barley (Hordeum vulgare L.) in a cool temperate climate in Alberta, Canada. Tillage systems were no tillage and tillage with rototilling (T), and two residue levels were straw removed (−S) and straw retained (+S). Bulk density (BD) of the 0–7.5 and 7.5–15 cm depths was significantly greater under NT (1.13–1.58 Mg m−3) than under T (0.99–1.41 Mg m−3) in both soils, irrespective of residue management. In both soils, penetration resistance (PR) was greater under NT than under T to 15 cm depth. Residue retention significantly reduced PR of the 0–10 cm soil in NT, but not in T. In the 0–5 cm depth of the Black Chernozem, the >2 mm fraction of dry aggregates was highest under NT + S (72%), and lowest under T − S (50%). The wind-erodible fraction (dry aggregates <1 mm size) was smallest (18%) under NT + S and largest (39%) under T − S. Soil aggregation benefited more from NT than from residue retention. Proportion of wind-erodible aggregates was generally greater in the Gray Luvisol than in the Black Chernozem. In the Black Chernozem, steady-state infiltration rate (IR) was significantly lower (33%) under NT than under T. Residue retention improved IR in both NT and T. In the Gray Luvisol, IR was not significantly affected by tillage and residue management. Despite firmer soil, NT and residue retention are recommended to improve aggregation in the cool temperate region of Western Canada.  相似文献   

18.
Abstract

Sodic water and spring water percolated through clay, clay loam, and sandy loam (SL) soils with exchangeable sodium percentages (ESPs) of 0, 10, 30, and 50. Reduction in saturated hydraulic conductivity and water stable aggregates recorded at higher ESPs. At ESP ≈30, application of sodic and spring water to clay soil (C) reduced saturated hydraulic conductivity from 1.2 to 3 mm hr?1, whereas in SL soil, the values were 2.8 and 6.2 mm hr?1, respectively. Results indicated that at any ESP and water source, the highest free swelling obtained was in the C soil. This study has practical importance to the management of irrigation water quality with respect to soil deterioration.  相似文献   

19.
Soil physical condition following tillage influences crop yield, but the desired condition cannot be adequately evaluated with current techniques. This study was conducted to determine a soil condition index (SCI) that could be used to select the type of implement needed to achieve an optimal seedbed with minimum energy input. Effects of bulk density, moisture content, and penetration resistance resulting from three tillage systems (no-till, chisel plow and moldboard plow), on the growth of corn (Zea mays L.) were studied. The experiment was conducted in Boone County, Ames, IA, on soils that are mostly Aquic Hapludolls, Typic Haplaquolls and Typic Hapludolls with slopes ranging from 0 to 5%. The results are from the 2000 season, which had normal weather conditions and yield levels for the Iowa state. The average corn grain yield at this site was 9.36 Mg/ha. At the V2 corn growth stage, the average dry biomass was 1.34 g per plant. The soil physical properties were normalized with respect to reference values and combined via multiple regression analysis against corn biomass at V2 stage into the SCI. Mean SCI values for the no-till, chisel and moldboard plow treatments were 0.86, 0.76, and 0.73, respectively, all with a standard error of 0.0127. The lower the SCI, the more optimum the soil physical conditions. An analysis of variance showed significant differences among mean SCI for each treatment (p-value=0.001). The use of the SCI could improve the tillage decision-making process in environments similar the one studied.  相似文献   

20.
【目的】研究黄土高原旱作农业区不同施肥覆盖措施对冬小麦地0—40 cm土壤剖面物理性质的影响,可为保持良好的土壤物理性状,探求适合渭北旱塬可持续的田间管理措施提供参考。【方法】基于设在渭北旱塬15年的田间定位试验,选取NP (N 150 kg/hm^2+P 75 kg/hm^2)、NPK (NP+K 30 kg/hm^2)、NPB (NP+biochar 14.0t/hm^2)、NPFFT (NP配合地膜夏闲期覆盖)、NPFGT (NP配合地膜生育期覆盖)和NPFWT (NP配合地膜全年覆盖)共6个处理。于2017年冬小麦收获期采集剖面土样,对0—10 cm、10—20 cm、20—30 cm和30—40 cm土层土壤含水量、土壤容重、饱和导水率和水稳定性团聚体等相关土壤物理性质进行测定与分析。【结果】与NP相比,NPK处理降低了收获期0—20 cm土壤容重,增加了耕层土壤总孔隙度和0—40 cm土层> 2 mm水稳定性团聚体含量,0—10 cm土层> 2 mm水稳定性团聚体含量显著提高了1.3倍(P <0.05);NPB处理,收获期耕层土壤容重降低,土壤总孔隙度增加,表层土壤饱和导水率显著降低27.9%,剖面土壤含水量和> 2 mm水稳定性团聚体含量均增加,且表层> 2 mm水稳定性团聚体含量显著提高了1.0倍;NPFFT处理收获期剖面土壤含水量降低,耕层土壤容重增加,总孔隙度降低;NPFGT处理收获期耕层土壤容重和剖面土壤含水量均增加,耕层总孔隙度降低,剖面土壤饱和导水率降低,尤其表层显著降低60.2%;NPFWT处理收获期耕层土壤容重增加,总孔隙度降低,表层土壤饱和导水率降低,但10—40 cm土壤饱和导水率平均提高57.5%,剖面土壤含水量、> 2 mm水稳定性团聚体含量、平均重量直径和几何平均直径均增加。受当地传统耕作深度的影响,不同施肥覆盖措施对土壤容重、饱和导水率和孔隙度的影响主要集中在0—20 cm土层,对20—40 cm土层影响较小。【结论】在氮磷肥配施的基础上,增施钾肥、生物炭和地膜全年覆盖均有利于改善试验农田土壤物理性质,但从经济投入和对土壤物理性状改良程度方面考虑,增施钾肥和地膜全年覆盖这两种处理是保持渭北旱塬良好土壤剖面物理性质的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号