首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用动物模型REML法估计金华猪繁殖性状遗传参数   总被引:9,自引:0,他引:9  
试验资料取自金华猪场 1 979~1 999年金华猪繁殖性能的生产记录。采用动物模型约束性最大似然法 (REML)对该猪群的遗传参数进行估计 ,测定 1 1 4 4头纯繁金华母猪的产仔哺育记录。结果表明 ,产仔数 (TNB)、产活仔数 (NBA)、初生重 (PBW)、初生窝重 (LBW)、 2 0日龄头数(NFC)、 2 0日龄窝重 (LWFC)、 2 0日龄重 (PWFC)、 60日龄头数 (NW)、 60日龄窝重 (LWW)、 60日龄重 (PWW)、乳头数 (TN)的遗传力分别为0 1 2± 0 0 9、 0 1 8± 0 1 1、 0 1 5± 0 0 9、 0 0 2± 0 0 9、 0 1 0± 0 1 1、 0 0 8± 0 1 3、 0 1 8± 0 1 0、 0 2 3± 0 1 1、 0 31± 0 1 3、 0 35± 0 1 1和 0 1 9± 0 1 0。TNB与NBA、LBW、NW、LWW的遗传相关范围为 0 66~ 0 88,TNB与PBW的遗传相关为 - 0 43。NBA与LBW、NW、LWW的遗传相关范围为 0 60~ 0 64,NBA与PBW遗传相关为 - 0 63。PBW与PWW的遗传相关为 0 51。  相似文献   

2.
Genetic and phenotypic parameters for sow productivity   总被引:1,自引:0,他引:1  
Data from 609 purebred Yorkshire, Hampshire and Duroc litters were utilized to obtain genetic and environmental parameter estimates for litter number and weight traits at birth, 21 d (first creep) and 42 d (weaning) considered as traits of the sow. Differences among paternal half-sib sets of sows were analyzed. Heritability estimates from this study were .26 +/- .12, .28 +/- .12 and .30 +/- .12 for litter size at birth, 21 and 42 d and .54 +/- .13, .17 +/- .11 and .15 +/- .11 for litter weights at those times, respectively. These estimates indicated that the dam's genetic contribution to litter weight was higher for prenatal growth than during nursing. The heritabilities for litter size were encouraging for within breed selection. Genetic correlations among litter sizes and genetic correlations among litter weights at birth, 21 and 42 d were large and positive. Large, positive genetic correlations also were found between litter size and weight at each of the three times. Negative correlations between litter size and average pig weight at both birth and 21 d and between litter size at birth and average pig weight at 21 d indicated that larger litters were associated genetically with smaller pigs. Phenotypic and environmental correlations generally indicated the same associations.  相似文献   

3.
We estimated heritabilities of semen production traits and their genetic correlations with litter traits and pork production traits in purebred Duroc pigs. Semen production traits were semen volume, sperm concentration, proportion of morphologically normal sperms, total number of sperm, and total number of morphologically normal sperm. Litter traits at farrowing were total number born, number born alive, number stillborn, total litter weight at birth, mean litter weight at birth, and piglet survival rate at birth. Litter traits at weaning were litter size at weaning, total litter weight at weaning, mean litter weight at weaning, and piglet survival rate from birth to weaning. Pork production traits were average daily gain, backfat thickness, and loin muscle area. We analyzed 45,913 semen collection records of 896 boars, 6,950 farrowing performance records of 1,400 sows, 2,237 weaning performance records of 586 sows, and individual growth performance records of 9,550 animals measured at approximately 5 mo of age. Heritabilities were estimated using a single-trait animal model. Genetic correlations were estimated using a 2-trait animal model. Estimated heritabilities of semen production traits ranged from 0.20 for sperm concentration to 0.29 for semen volume and were equal to or higher than those of litter traits, ranging from 0.06 for number stillborn and piglet survival rate at birth to 0.25 for mean litter weight at birth, but lower than those of pork production traits, ranging from 0.50 for average daily gain to 0.63 for backfat thickness. In many cases, the absolute values of estimated genetic correlations between semen production traits and other traits were smaller than 0.3. These estimated genetic parameters provide useful information for establishing a comprehensive pig breeding scheme.  相似文献   

4.
撒坝猪乳头数遗传力及其与繁殖性能关系的研究   总被引:4,自引:0,他引:4  
本研究对 4个世代共 577头撒坝猪的乳头数进行了分析 ,并用HARVEY程序对乳头数的遗传力进行了估计 ,同时利用 1 2 8头有繁殖性能记录的母猪资料对乳头数与繁殖性状的关系进行了分析。结果表明 ,各世代的乳头数存在着显著差异 ,且逐代均有显著提高 ;乳头数的遗传力为 0 .331 ;乳头数与总产仔数和活产仔数间遗传相关和表型相关均为负值 ,与初生窝重、2 0日窝重、断奶仔数和断奶窝重间则存在着正的遗传相关和表型相关 ;乳头数与所有繁殖性状的环境相关都较弱 ( -0 .0 0 2~ 0 .0 94 )  相似文献   

5.
Data on litter size, weaning weights at 60, 90, and 120 d, postweaning gains from weaning to 120 or 365 d of age, fleece weight, and fiber diameter from Targhee, Suffolk, and Polypay flocks participating in the U.S. National Sheep Improvement Program were used to estimate genetic parameters for litter size and genetic relationships between early-life traits and future litter size. Records on 7,591 lambings by 3,131 Targhee ewes, 10,295 lambings by 5,038 Suffolk ewes, and 6,061 lambings by 2,709 Polypay ewes were used. Heritability estimates for litter size ranged from .09 to .11 across breeds; repeatability ranged from .09 to .13. Additive genetic effects on litter size were generally positively, and occasionally significantly, correlated with animal additive genetic effects on weaning weights and postweaning gains. Genetic correlations (r(a)) ranged from .08 to .48 in Targhee and from .17 to .43 in Suffolk but were close to 0 in Polypay (-.14 to .09). Additive maternal effects on weaning weight were positively associated with litter size in Suffolk and Polypay; this correlation was negative (-.23 to -.35), but not significant, in Targhee. Fleece weight was not strongly associated with litter size; (r(a) = -.09 to .21). However, fiber diameter had a significant undesirable correlation with litter size (.30) in Targhee. Estimates of phenotypic correlations of litter size with early-life traits were uniformly small (-.02 to .08). Thus, although occasional genetic antagonisms between litter size and early-life traits were observed in these data, none appeared large enough to prevent simultaneous genetic improvement in both traits.  相似文献   

6.
《Livestock Science》2006,99(1):69-77
Economic values or weights measure the net economic gain per unit genetic increase of a given trait. These were derived for sow productivity traits for use as weighting factors in a dam line selection index used by purebred or nucleus dam line breeders. The profit function approach was used in order to provide flexibility to alternative production systems, market requirements or population trait levels. The approach accounted for constraints on perinatal survival rate imposed by larger birth litter sizes. The effect of accounting for these constraints was to reduce the economic value of birth litter size as the population average increased; without this, the economic weight for litter size was constant. Weights for the other traits were not affected. Economic weights were calculated for both the 100 kg finished pig and the 25 kg feeder pig market, and for a range of average birth litter sizes, with constant values for all other traits, using average market conditions, prices and costs in Canada as an example. The relative importance of litter size for the finished pig market decreased from 64% of the total breeding value when average litter size was 8 pigs to 29% when average litter size was 20 pigs, whereas that of perinatal survival increased from 17% to 42%, and that of survival to weaning increased from 7% to 18%. The relative importance of litter size for the feeder pig market also decreased from 45% to 15% as average litter size increased from 8 to 20 pigs, whereas that of piglet weaning weight increased from 22% to 41%, that of perinatal survival increased from 12% to 22% and that of survival to weaning increased from 5% to 9%. The relative importance of age at puberty and weaning to conception interval were both less than 8% of the total in both markets at all litter sizes. These results show that economic weights for litter size designed for populations with relatively small litter sizes should be reduced when the average litter size becomes large and more emphasis should be placed on other traits, particularly perinatal survival.  相似文献   

7.
Records on 251,296 Yorkshire, 75,262 Duroc, 83,338 Hampshire, and 53,234 Landrace litters born between 1984 and April of 1999 in herds on the National Swine Registry Swine Testing and Genetic Evaluation System were analyzed. Animal model and restricted maximum likelihood procedures were used to estimate variances of animal genetic (a), maternal genetic (m), permanent environmental, and service sire, and the covariances between a and m for number born alive (NBA), litter weight at 21 d (L21WT), and number weaned (NW). Fixed effects of contemporary groups were included in the analysis. Based on a single-trait model, estimates of heritabilities were 0.10, 0.09, 0.08, and 0.08 for NBA; 0.08, 0.07, 0.08, and 0.09 for L21WT; and 0.05, 0.07, 0.05, and 0.05 for NW in the Yorkshire, Duroc, Hampshire, and Landrace breeds, respectively. Estimates of maternal genetic effects were low and ranged from 0.00 to 0.02 for all traits and all breeds. Estimates of permanent environmental effects ranged from 0.03 to 0.08. Estimates of service sire effects ranged from 0.02 to 0.05. A bivariate analysis was used to estimate the genetic correlations among traits. Average genetic correlations over the four breeds were 0.13, 0.15, and 0.71 for NBA with L21WT, NBA with NW, and L21WT with NW, respectively. Average genetic trends were 0.018 pigs/yr, 0.114 kg/yr, and 0.004 pigs/yr for NBA, L21WT, and NW, respectively. Although estimates of heritabilities for litter traits were low and similar across breeds, genetic variances for litter traits were sufficiently large to indicate that litter traits could be improved through selection. This study presents the first set of breed-specific estimates of genetic parameters available from large numbers of field records. It provides information for use in national genetic evaluations.  相似文献   

8.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18 151 animals for birth weight and from 15 360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

9.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18151 animals for birth weight and from 15360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

10.
Mass selection for an index of increased postweaning average daily gain and decreased backfat thickness was practiced for five generations. Litter size and weight for 221 gilt litters, birth weight and nipple number for 2,242 piglets and weaning weight at 42 d of age for 2,111 pigs were recorded. Carcass measurements were taken on 331 pigs. Differences between means of the lines (select control) were regressed on cumulative selection differential of the index. These regression coefficients were negative (P greater than .10) for total number born, number born alive, number weaned per litter, nipple number and carcass backfat thickness. Coefficients were positive (P greater than .10) for individual pig and litter weights at birth and weaning and for the carcass traits of length, longissimus muscle area and percentage of ham and loin. Absolute values of realized genetic correlations of index with traits evaluated were all .35 or less except the correlation with carcass backfat, which was -.84. None of these was significant; therefore, index selection for lean growth should have little effect on litter size and weight but may have a beneficial effect on carcass backfat.  相似文献   

11.
Our objective was to estimate responses in reproductive traits in the Nebraska Index line (I) after 19 generations of selection for increased litter size. Responses were estimated in dams producing pure line, F1, and three-way cross litters. A total of 850 litters were produced over six year-seasons, including 224 pure line litters, 393 F1 litters produced from I and C females mated with Danbred NA Landrace (L) or Duroc-Hampshire (T) boars, and 233 litters by F1 L x I and L x C females mated with T boars. Contrasts of means were used to estimate the genetic difference between I and C and interactions of line differences with mating type. Farrowing rates of lines I (u = 91.0%) and C (u = 92.8%) did not differ. Averaged across all genetic groups, mean number born alive per litter was 10.1 pigs, and number and weight of pigs weaned per litter, both adjusted for number nursed and weaning age of 12 d, were 9.7 pigs and 34.4 kg, respectively. Averaged across mating types, direct genetic effects of I were greater than C (P < 0.05) for total born (3.53 pigs), number born alive (2.53 pigs), number of mummified pigs (0.22 pig), and litter birth weight (2.14 kg). The direct genetic effect of line I was less than C (P < 0.05) for litter weaning weight (-1.88 kg). Interactions of line effects with crossing system were significant (P < 0.05) for total number born, number of stillborn pigs, number weaned, and litter weaning weight. In pure line litters, I exceeded C by 4.18 total pigs and 1.76 stillborn pigs per litter, whereas the estimate of I-C in F1 litters was 2.74 total pigs and 0.78 stillborn pig per litter. The contrast between I and C for number weaned and litter weaning weight in pure litters was 0.32 pig and -0.28 kg, respectively, compared with 0.25 pig and -2.14 kg in F1 litters. Crossbreeding is an effective way to use the enhanced reproductive efficiency of the Index line.  相似文献   

12.
Genetic breed differences, heterosis, recombination loss, and heritability for reproduction traits, lamb survival and growth traits to 90 days of age were estimated from crossing D'man and Timahdite Moroccan breeds. The crossbreeding parameters were fitted as covariates in the model of analysis. The REML method was used to estimate (co)variance components using an animal model. The first estimation of crossbreeding effects for Timahdite and D'man breeds shows that breed differences in litter traits are mainly of maternal genetic origin: +1.04 lambs, +1.88 kg, +0.60 lambs, and +2.23 kg in favour of D'man breed for litter size at lambing, litter weight at lambing, litter size at weaning, and litter weight at 90 days, respectively. The breed differences in lamb growth and survival are also of maternal genetic origin for the majority of traits studied, but in favour of the Timahdite breed: +3.48 kg, +45 g day−1 and +0.19 lambs for weight at 90 days, for average daily gain between 30 and 90 days of age, and for lamb survival to 90 days, respectively. The D'man direct genetic effect was low and negative for survival and birth weight of lambs during the first month of life. All traits studied showed positive heterosis effects. Recombination loss effects were not significant. Therefore, crossbreeding of Timahdite with D'man breeds of sheep can result in an improved efficiency of production of saleable lambs. Heritability estimates were medium for litter size but low for the other reproduction traits. Direct heritabilities were low for body weights and lamb survival at 90 days and the corresponding maternal heritabilities showed, however, low to moderate estimates. For litter traits, the estimates of genetic and phenotypic correlations were positive and particularly high for genetic correlations.  相似文献   

13.
When sows and their litters are kept outdoors, much of the responsibility for the litter is shifted from the herdsman to the sow compared to when the sows are kept indoors. Therefore, the maternal ability, including maternal behaviour, is believed to be important in outdoor piglet production. The aim of this study was to describe maternal traits in conventionally bred first-parity sows kept outdoors. Nursing behaviour, sow activity, sow body reserves, litter size and piglet growth were studied in 40 first-parity sows during a seven week long lactation. The sows were kept in groups outdoors. Sow activity (lying down or active) and nursing behaviour (nursing frequency, nursing duration and nursing terminator) were recorded on videotapes at four days post partum (pp) and directly observed at four and six weeks pp. Cross suckling was observed at four and six weeks pp. Sows were weighed and measured for backfat depth five days before farrowing, two weeks pp and at weaning seven weeks pp. Piglets were weighed at four days pp, at two weeks pp and at weaning. We concluded that sow nursing behaviour and activity are individual characteristics repeatable within sows' late lactation. Less active sows are more available for suckling. Light and thin sows have an earlier and more progressed weaning process than heavier, fatter sows. A significant positive relation was found between sow appetite in early lactation and piglet growth until weaning. Sow nursing behaviour is not important for piglet growth when sows and piglets are held in groups, piglets have access to sow feed and piglets are weaned as late as at seven weeks of age.  相似文献   

14.
藏猪繁殖性状遗传参数分析   总被引:1,自引:1,他引:0  
藏猪是中国特有的高原型地方猪种,本研究采用非求导约束最大似然(MTDFREML)方法对藏猪繁殖性状进行遗传分析。结果估算出藏猪乳头数、总产仔数、产活仔数、初生窝重、断奶仔数、断奶窝重的遗传力分别为0.36、0.12、0.10、0.13、0.09和0.12,乳头数与断奶窝重、初生窝重和断奶仔数存在明显的遗传力相关。  相似文献   

15.
The objective was to estimate breed, heterosis, and recombination effects on pig reproductive traits in two different four-breed composite populations. Breeds included Yorkshire, Landrace, Large White, and Chester White in Exp. 1 and Duroc, Hampshire, Pietrain, and Spot in Exp. 2. Data were recorded on purebred pigs, two-breed cross pigs, and pigs from generations F1 through F6, where F1 pigs were the first generation of a four-breed cross. Litter traits were considered a trait of the gilt. There were 868 first parity litters in Exp. 1 and 865 in Exp. 2. Direct heterosis significantly increased sow weight at 110 d of gestation and litter weight at 14 and 28 d (weaning) in both experiments. Direct heterosis significantly increased number of nipples, weight at puberty, lactation weight loss, litter size, and litter birth weight in Exp. 2. Gestation length in Exp. 1 and age at puberty in Exp. 1 and Exp. 2 were significantly decreased by direct heterosis. Maternal heterosis significantly increased age at puberty in Exp. 2 and decreased sow weight at 110 d of gestation in Exp. 1. Recombination significantly increased sow weight at 110 d of gestation and tended to increase total number born and litter birth weight in Exp. 1. Recombination significantly decreased age at puberty in Exp. 2. Litter heterosis significantly increased number of pigs at 14 and 28 d; litter weights at birth, 14, and 28 d; and tended to increase lactation weight loss in Exp. 1. Litter heterosis decreased litter size in Exp. 2. Maternal heterosis and recombination effects had a sampling correlation of -0.97 in Exp. 1 and -0.91 in Exp. 2 for number of fully formed pigs. Therefore, maternal heterosis and recombination effects were summed, and their net effect was tested. This net effect tended to increase number of nipples, lactation weight loss, and litter birth weight and significantly increased number of fully formed pigs in Exp. 1. Direct, maternal, and litter heterosis and recombination effects significantly influenced reproductive traits.  相似文献   

16.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

17.
Estimates of (co)variance and genetic parameters of birth, weaning (205 days) and yearling (365 days) weight were obtained using single-trait animal models. The data were analysed by restricted maximum likelihood, fitting an animal model that included direct and maternal genetic and permanent environmental effects. The data included records collected between 1976 and 2001. The pedigree information extended as far back as early 1960s. The heritabilities for direct effects of birth, weaning and yearling weights were 0.36, 0.29 and 0.25, respectively. Heritability estimates for maternal effects were 0.13, 0.16 and 0.15 for birth, weaning and yearling weights, respectively. The correlations between direct and maternal additive genetic effects were negative for all traits analysed. The results indicate that both direct and maternal effects should be included in a selection programme for all the traits analysed.  相似文献   

18.
Genetic evaluations for the U.S. swine industry are conducted by the eight purebred associations of the National Association of Swine Records. Within-herd evaluations of the growth traits (days to 105 kg [market] and backfat depth) were first reported in 1986. Analyses of the maternal traits (litter size at birth and weaning, and litter 21-d weight) were inaugurated in 1987. Expected progeny differences (EPD) are reported for all traits and for general, paternal, and maternal bioeconomic indexes. A sow productivity index combining only maternal traits is available. All records are adjusted according to National Swine Improvement Federation (NSIF) guidelines for effects such as number of pigs transferred at crossfostering and age at recorded observation prior to the BLUP evaluation. Within-herd analyses of individual contemporary groups are conducted immediately on receipt of performance records at each breed association office. All parents in the herd and the young pigs in the current group are evaluated. A report is returned to the breeder for use in herd selection and the EPD are placed in the pedigree file. The genetic base of each herd is defined as the first n tested pigs or litters, where n is the number of pigs registered annually within the herd. Change in mean EPD between groups is indicative of genetic trend. Periodic across-herd analyses are used to update interim within-herd analyses and a national sire summary is published.  相似文献   

19.
撒坝猪繁殖性状的表型和遗传参数分析   总被引:6,自引:1,他引:5  
对 6个世代共 2 31头撒坝母猪的繁殖性能数据资料进行了分析。在建立混合线性模型的基础上 ,采用HARVEY程序估计了总产仔数、活产仔数、初生窝重、 2 0日龄窝重、 60日龄断奶仔数和断奶窝重等 6个繁殖性状的表型和遗传参数。结果表明 ,撒坝猪繁殖性能在选育过程中有一定程度的提高 ,但速度平缓 ;上述 6个性状的遗传力分别为 0 0 37,0 0 75,0 1 1 1 ,0 1 55 ,0 1 0 3和 0 31 0 ,多为低遗传力性状 ;各性状间的遗传相关介于 0 532~ 0 773之间 ,表型相关和环境相关分别在 0 30 3~ 0 946和 0 442~ 0 972之间  相似文献   

20.
M. Chimonyo  K. Dzama  E. Bhebhe   《Livestock Science》2006,105(1-3):69-77
Genetic parameters for individual birth weight (IBWT), total number of pigs born (NBT), number of pigs born alive (NBA), number of pigs born dead (NBD) and litter weight at birth (LBWT) were estimated using 1961 Mukota pigs kept at the University of Zimbabwe Farm, Harare, Zimbabwe. Variance components were estimated for IBWT based on a direct-maternal genetic effects model. The genetic relationships among NBT, NBA, NBD and LBWT were assessed using a multi-trait direct effects model. For LBWT, the direct, maternal and common environmental litter proportions on the phenotypic variance were 0.090, 0.033 and 0.009, respectively. After adjustment of IBWT for NBA, phenotypic fractions were 0.091, 0.034 and 0.011 for direct, maternal and litter effects. The correlation between the direct and maternal genetic effects of IBWT was − 0.354 and − 0.295, with and without adjustment for NBT. Heritabilities for NBT, NBA, NBD and LBWT were 0.020, 0.030, 0.088 and 0.196, respectively. Differences in the maternal heritability and the heritability for LBWT, a trait of the dam, are different due to accumulation of observations per litter. Maternal genetic effects are, therefore, of less importance than in highly selected European breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号