首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Hydroxyl ion release by maize (Zea mays L.) roots under acidic conditions was investigated with a view to develop a bioremediation method for ameliorating acid soils in tropical and subtropical regions.

Materials and methods

Two hydroponic culture experiments and one pot experiment were conducted: pH, nitrogen state, and rhizobox condition, which investigated the effects of different nitrogen forms on hydroxyl release by maize roots under acidic conditions.

Results and discussion

The pH of the culture solution increased as culture time rose. The gradient of change increased with rising NO3 ?/NH4 + molar ratios. Maize roots released more hydroxyl ions at pH 4.0 than at pH 5.0. The amount of hydroxyl ions released by maize roots at a constant pH was greater than those at a nonconstant pH. Application of calcium nitrate reduced exchangeable acidity and increased the pH in an Ultisol rhizosphere, compared with bulk soil. The increasing magnitude of soil pH was greater at higher doses of N. The absorption of NO3 ?–N increased as the NO3 ?/NH4 + molar ratios rose, which was responsible for hydroxyl ion release and pH increases in culture solutions and rhizosphere.

Conclusions

Root-induced alkalization in the rhizosphere resulting from nitrate absorption by maize plants can be used to ameliorate acidic Ultisols.  相似文献   

2.

Purpose

The purpose of the present study is to evaluate slow-release nitrogen capabilities of soil amendments obtained by modification of humic materials from peat and lignite with alkoxyorganosilanes carrying different amine substituents.

Materials and methods

The humates from lignite and peat were modified using (3-aminopropyltriethoxy)-silane (APTES) and (1-aminohexamethylenene, 6-aminomethylene)-triethoxysilane (AHATES). The obtained derivatives were characterized using elemental analysis and Fourier transform infrared spectroscopy. Nitrogen release in the form of ammonia or nitrate was evaluated using dissolution tests under sterile aqueous conditions as well as long-term soil experiments. Ammonium and nitrate were determined using ion-selective electrodes. Activity index (AI) was calculated from the dissolution tests. For soil trials, arable Retisol was sampled from 0- to 5-cm layer in Yaroslavl region (Russia). The soil experiments were conducted over 78 days using (NH4)2SO4 as an activator of nitrification and 3-amino-1,2,4-triazole as an inhibitor of autotrophic nitrifying bacteria.

Results and discussion

Modification of lignite and peat humates leads to an increase in nitrogen content up to 2 and 4.3 %, respectively, in case of APTES, and up to 3 and 6 %, respectively, in case of AHATES. All humic derivatives gradually released N upon dissolution in water over 6 days up to 51 % of the total N. The AI values ranged from 4 to 13 %. Amendment of soil with the modified humic materials induced an increase in nitrate content resulting from nitrification of released ammonia by soil microflora. This was confirmed by aminotriasole experiments. The nitrogen release occurred slowly: over the first week of incubation, it did not exceed 36–69 % of the total N content. The higher release rate of ammonium nitrogen was observed for CHS-AHATES versus CHS-APTES derivative, whereas no difference was seen between the two peat derivatives, which showed release rate on the level of CHS-AHATES derivative. Positive effect of all modified humic materials lasted over 78 days.

Conclusions

Modification of lignite and peat humates with two aminoorganosilanes carrying one and two nitrogen atoms in the amine substituent brought about twofold to threefold enrichment of the parent humic materials with nitrogen, which was capable of slow release upon incubation in soils. It was released in the form of ammonia and transformed to nitrates by autotrophic nitrifying soil microflora. There was no clear relationship established between structure of amine substituent of organosilane and slow-release properties of the corresponding humic derivatives. The conclusion was met that principal application of aminoorganosilane derivatives of humic substances (HS) is soil structuring, whereas nitrogen-fertilizing capabilities might be considered as beneficial added-value feature of these humic products.
  相似文献   

3.

Purpose

Lead (Pb) is a highly studied contaminant with no known biological function that causes harmful adverse effects on ecological and human health. We tried to evaluate how protective the current soil regulatory levels are for Pb towards safeguarding the ecological health. In order to achieve this, our study evaluated the effect of soil texture and pH on the toxicity and availability of lead to earthworms in soils varying in soil properties.

Materials and methods

The earthworm Eisenia fetida was exposed to Pb in three soils with different physico-chemical characteristics. Pb solutions were homogenously mixed with soil to obtain concentrations ranging from 0 to 10,000 mg/kg Pb dry soil. Avoidance behaviour, weight loss and mortality were measured in this study to calculate the EC50 and LC50 values.

Results and discussion

Weight loss and mortality in earthworms due to Pb toxicity were in the following order: acidic > neutral > alkaline soil. The EC50 values resulting in 50% decrease in worm weight over control for Pb in acidic, neutral and alkaline soils were 460, 3606 and 5753 mg/kg soil, respectively. Thus, the acidic soil recorded an EC50 well below the soil guideline value for Pb. Whereas, the LC50 values resulting in 50% mortality in worms over control were 1161, 4648 and 7851 mg/kg, respectively, for acidic, neutral and alkaline soils. The Pb concentrations in earthworms ranged from 0.2 to 740 mg/kg wet weight. Soils with low clay content and acidic to neutral pH values demonstrated an increased Pb toxicity in earthworms compared to the soils with alkaline pH.

Conclusions

The worm weight loss is a more sensitive parameter than the mortality. This study emphasizes that the soil regulatory levels for Pb are not protective of worms in acidic soils. Therefore, care should be taken when using the current regulatory limits to assess and predict the safety of a contaminated site with acidic soils towards the ecological health.
  相似文献   

4.

Purpose

Applications of mineral and organic fertilizer increased soil cadmium (Cd) and could enhance Cd concentrations in edible crops, respectively. Although red mud (RMD) effectively decreased metal bioavailability in soil, the influence of RMD addition on vegetable growth and metal accumulation under high fertilization conditions has rarely been addressed. The aim of this study was to investigate the effects of raw RMD addition on cole growth, quality, and nutrition and Cd accumulation under high fertilization conditions.

Materials and methods

Pot experiments with cole (Brassica campestris L.) were carried out in a greenhouse. Three treatments, CK (with no mineral fertilizer and RMD addition), CT (more than 2.5 times conventional level of mineral fertilizer applied without any RMD), and RM (more than 2.5 times conventional level of mineral fertilizer applied with RMD added at 0.4 % w/w), were established. After 40 days, the cole plants and soils of every replicate of all treatments were sampled. The Cd, biomass, vitamin C (VC), and total nitrogen and phosphorus of the cole plant samples and the Cd, pH, nitrate, and phosphorus of the soil samples were determined.

Results and discussion

In contrast to the CT treatment, RM treatment did not significantly influence the biomass and nitrate concentration of the aboveground cole. However, it significantly reduced the Cd content in cole shoots and its bioaccumulation factors by 30.0 and 28.5 %, respectively. The reduction of bioavailable Cd in soil by RMD sorption and the competition with calcium released from RMD led to low Cd assimilation by root. Finally, less Cd was transported to aboveground plant parts in the RM treatment compared with the CT treatment. RMD addition markedly enhanced the total nitrogen in cole shoots by >16.0 %, and the VC by 20.9 %. The promotion of bacterial abundance and soil enzyme activity by RMD addition and calcium release from RMD generated substantial plant available nitrogen.

Conclusions

With large rate of mineral fertilizer application to the soil, RMD (0.4 %, w/w) addition did not significantly influence the biomass, nitrate, and VC of aboveground cole; however, it significantly reduced the Cd and markedly enhanced the total nitrogen in cole shoots. This study provides valuable information for the safe application of RMD in vegetable production.
  相似文献   

5.

Purpose

Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO3 ? leaching and soil acidification.

Materials and methods

We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 300 mg N kg?1 ammonium sulfate or urea and 1 or 5 wt% rice straw biochar were applied.

Results and discussion

During aerobic incubation, NO3 ? accumulation was enhanced by applying biochar in increasing amounts from 1 to 5 wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO3 ?, but 5 wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 5 wt% biochar application compared to soils treated with only N.

Conclusions

Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO3 ? leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.  相似文献   

6.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

7.

Purpose

Developing routine methods that accurately predict soil nitrogen (N) mineralization is essential for fertilization recommendation; thus, chemical soil testing has received worldwide attention. However, the optimal chemical soil test for predicting soil N mineralization is region specific. This study aimed to determine suitable chemical soil tests for predicting N mineralization in paddy soils of the Dongting Lake region, China.

Materials and methods

Composite surface samples (0–20 cm) of soils (n?=?30) with diverse inherent properties were collected from representative paddy fields across the region. The benchmark indices for soil N mineralization were the net mineralization rate of soil N in a 112-day anaerobic incubation under waterlogged conditions (NMRN112) and N mineralization potential (N o ) estimated using a modified double exponential model. Laboratory-based measurements of soil labile organic N (SLON) were conducted using chemical fractionation methods including 0.01 M NaHCO3 extraction, hot 2 M KCl hydrolysis, phosphate-borate (PB) buffer hydrolysis, acidic KMnO4 oxidation, and alkaline KMnO4 oxidation. These were compared with the benchmark indices to assess their suitability for use as indicators for N mineralization.

Results and discussion

Acidic KMnO4-oxidative organic N (acidic KMnO4-N) and PB buffer-hydrolysable organic N (PBHYDR-N) correlated strongly with NMRN112 and N o (r?=?0.825–0.884, P?<?0.001, n?=?30). Grouping of soils based on soil texture generally provided no improvement in the relationships of chemical soil tests with NMRN112 and N o . Multiple stepwise regression analysis indicated that combining acidic KMnO4-N and PBHYDR-N yielded the best prediction of soil N mineralization, explaining 86.1 and 85.5 % of the variation in NMRN112 and N o , respectively, of the 30 tested paddy soils.

Conclusions

The results of acidic KMnO4-N and PBHYDR-N as indicators for soil N mineralization were promising, and the operations of acidic KMnO4 oxidation and PB buffer hydrolysis procedures are simple and cost-effective. Therefore, a combination of acidic KMnO4-N and PBHYDR-N shows promise in predicting N mineralization in paddy soils of the Dongting Lake region. However, further calibration through field studies is required and the chemical characteristics of acidic KMnO4-N and PBHYDR-N needs to be further clarified.
  相似文献   

8.

Purpose

The beneficial effect to the environment of nitrate (NO3 ?) removal by denitrification depends on the partitioning of its end products into nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2). However, in subtropical China, acidic forest mineral soils are characterized by negligible denitrification capacity and thus reactive forms of N could not be effectively converted to inert N2, resulting in a negative environmental consequence. In this study, the influences of C input from litter decomposition on denitrification rate and its gaseous products under anoxic conditions in the acidic coniferous and broad-leaved forest soils in subtropical China were investigated using the acetylene (C2H2) blockage technique in the laboratory.

Materials and methods

The coniferous and broad-leaved forest soils with and without litter addition were incubated under anaerobic conditions for 244 h. There were three treatments for each forest soil including addition of 0.5 and 1% corresponding litter (gram of litter per gram of soil) and the control without addition of litter.

Results and discussion

The results showed that litter addition into the broad-leaved forest soil had no effect on average rates of denitrification (calculated as the sum of NO, N2O, and N2), whereas in the coniferous forest soil, the addition resulted in a significant increase in average denitrification rate. In the broad-leaved forest soil, both rates of litter addition decreased the production of NO but increased the production of N2, and high rates of litter addition into the coniferous forest soil promoted the reduction of N2O to N2.

Conclusions

Increased decomposition of litter in the forest soils could effectively reduce N2O and NO production through denitrification under anaerobic conditions.  相似文献   

9.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

10.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

11.

Purpose

We evaluated the ameliorative effects of crop straw biochars either alone or in combination with nitrate fertilizer on soil acidity and maize growth.

Materials and methods

Low energy-consuming biochars were prepared from canola and peanut straws at 400 °C for 2 h. Incubation experiment was conducted to determine application rate of biochars. Afterward, maize crop was grown in pots for 85 days to investigate the effects of 1 % biochars combined with nitrate fertilizer on soil pH, exchangeable acidity, and maize growth in an Ultisol collected from Guangdong Province, China.

Results and discussion

Application of 0.5, 1.0, and 1.5 % either canola straw biochar (CSB) or peanut straw biochar (PSB) increased soil pH by 0.15, 0.27, 0.34, and 0.30, 0.58, 0.83 U, respectively, after 65-day incubation. Soil pH was increased by 0.49, 0.72, 0.78, and 0.88 U when 1 % CSB or PSB was applied in combination with 100 and 200 mg N/kg of nitrate, respectively, after maize harvest in greenhouse pot experiment. These low-cost biochars when applied alone or in combination with nitrate not only reduced soil exchangeable acidity, but also increased Ca2+, Mg2+, K+, Na+, and base saturation degree of the soil. A total of 49.91 and 80.58 % decreases in exchangeable acidity were observed when 1 % CSB and PSB were incubated with the soil for 65 days, compared to pot experiment where 71.35, 78.64, 80.2, and 81.77 % reductions of exchangeable acidity were observed when 1 % CSB and PSB were applied in combination with 100 and 200 mg N/kg of nitrate, respectively. The higher contents of base cations (Ca2+, Mg2+, K+, Na+) in biochars also influenced the plant growth. The higher biomass in CSB-treated pots was attributed to the higher K content compared to PSB. The higher percent reduction in exchangeable Al3+ by applying 1 % CSB combined with 200 mg N/kg of nitrate consistently produced maximum biomass (129.65 g/pot) compared to 100 mg N/kg of nitrate and 1 % PSB combined with 100 and 200 mg N/kg of nitrate. The exchangeable Al3+ mainly responsible for exchangeable acidity was decreased with the application of biochars and nitrate fertilizer. A highly significant negative relationship was observed between soil exchangeable Al3+ and plant biomass (r 2?=?0.88, P?<?0.05).

Conclusions

The biochars in combination with nitrate fertilizer are cost-effective options to effectively reduce soil acidity and improve crop growth on sustainable basis.
  相似文献   

12.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

13.

Purpose

Human disturbance is a major culprit driving imbalances in the biological transformation of nitrogen from the nonreactive to the reactive pool and is therefore one of the greatest concerns for nitrogen (N) cycling. The objective of this study was to compare potential nitrification rates and the abundance of ammonia oxidizers responsible for nitrification, with the amendment of external N in different agricultural soils.

Materials and methods

Three typical Chinese agricultural soils, QiYang (QY) acid soil, ShenYang (SY) neutral soil, and FengQiu (FQ) alkaline soil, were amended with 0, 20, 150, and 300 μg NH4 +-N g?1 soil and incubated for 40 days. The abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) at the end of incubation in the soil microcosms was determined using the real-time PCR.

Results and discussion

There was a significant decrease in ammonium concentration in the QY soil from the highest to the lowest N-loading treatments, while no significant difference in ammonium concentrations was detected among the different N-loading treatments for the SY and FQ soils. A significantly higher potential nitrification rate (PNR) was observed in the FQ soil while lowest PNR was found in the QY soil. Quantitative PCR analysis of AOB amoA genes demonstrated that AOB abundance was significantly higher in the high N-loading treatments than in the control for the QY soil only, while no significant difference among treatments in the SY and FQ soils. A significant positive correlation between PNR and AOB amoA abundance, however, was found for the SY and FQ soils, but not for the QY soil. Little difference in AOA amoA abundance between different N-loading treatments was observed for all the soils.

Conclusions

This study suggested that ammonia oxidation capacity in the FQ and SY soils was higher than those in the QY soil with the addition of ammonium fertilizer for a short-term. These findings indicated that understanding the differential responses of biological nitrification to varying input levels of ammonium fertilizer is important for maximizing N use efficiency and thereby improving agricultural fertilization management.  相似文献   

14.

Purpose

This study aimed to investigate the effect of initial soil pH and organic anion-to-acid ratio on changes in soil pH.

Materials and methods

Two soils (Podosol and Tenosol) along with two carboxylic acids (malic and citric acid) and their anions (sodium malate and citrate), commonly found in plant residues, were used in this study. Stock solutions of either malic acid and disodium malate or citric acid and trisodium citrate were added to pre-incubated soils at anion-to-acid ratios of 0:100, 10:90, 25:75, 50:50, 75:25, 90:10, 100:0 and at 0.25 g C kg?1 soil. Soils were adjusted to 80 % field capacity and mixed thoroughly, and three replicates of 50 g of each soil were transferred into individual plastic cores and incubated at 25 °C in the dark for 30 days. Soil pH, respiration, NH4 +, and NO3 ? were determined.

Results and discussion

Soil pH increased linearly with increasing organic anion-to-acid ratio. The addition of organic anions to soil resulted in net alkalinisation. However, the addition of organic acids immediately decreased soil pH. During subsequent incubation, soil pH increased when the organic anions were decomposed. Alkalinity generation was lower in the Podosol (initial pH 4.5) than in the Tenosol (initial pH 6.2), and was proportional to anion-to-acid ratio across all the treatments. Cumulative CO2-C release was approximately three times lower in the Podosol than the Tenosol at day 2 due to lower microbial activity in the low-pH Podosol.

Conclusions

Increasing anion-to-acid ratio of organic compounds increased soil pH. Increases in soil pH were mainly attributed to direct chemical reactions and decomposition of organic anions. Low pH decreased the amount of alkalinity generated by addition of organic compounds due to incomplete decomposition of the added compounds. This study implies that organic anion-to-acid ratio in plant residues plays an important role in soil pH change.  相似文献   

15.

Purpose

Problems associated with Organochlorine pesticide (OCP)-contaminated soils have received wide attention. To understand the anaerobic biodegradation process constraints, innovative mathematical analysis methods are effective.

Materials and methods

Response surface methodology (RSM) and Tenax TA extraction method combined with the first-three-compartment model were employed to systematically investigate the role of nitrate concentration and bioaccessibility enhancer (methyl-β-cyclodextrin, MCD) in the anaerobic biodegradation of OCPs in contaminated soil.

Results and discussion

The sole addition of either KNO3 or MCD could facilitate the anaerobic biodegradation of OCPs. The highest biodegradation for total OCPs, hexachlorocyclohexanes, endosulfans, and chlordanes were 71.6, 82.1, 68.3, and 55.6 %, respectively, when 20 mM KNO3 and 3.0 % (w/w) MCD were applied simultaneously. As predicted by RSM, the theoretical maximum biodegradation for total OCPs ranged from 60 to 80 % when 20 to 25 mM KNO3 and >2.5 % (w/w) MCD were applied simultaneously. Tenax TA extraction method demonstrated the enhancement of OCP bioaccessibility caused by MCD addition. Changes in the soil microbial activities also suggested the positive effects of adding suitable amounts of KNO3 as a cosubstrate to facilitate the anaerobic biodegradation of OCPs.

Conclusions

The amount of KNO3 and MCD are crucial in influencing OCP biodegradation. RSM was demonstrated to be a powerful tool to estimate and predicting the optimal OCP biodegradation under KNO3 and MCD application simultaneously.  相似文献   

16.

Purpose

This study aimed to compare the effectiveness of chemical-enhanced soil washing (with chelating agents, humic substances and inorganic acids) and soil stabilisation by inorganic industrial by-products (coal fly ash, acid mine drainage sludge and zero-valent iron) and organic resource (lignite) for timber treatment site remediation.

Materials and methods

Both remediation options were assessed in terms of extraction/leaching kinetics and residual leachability (toxicity characteristic leaching procedure, TCLP) of the major risk drivers, i.e. Cu and As.

Results and discussion

In chemical-enhanced soil washing, chelating agents only minimised the Cu leachability. Humic substances were ineffective while inorganic acids reduced the As leachability to the detriment of the soil quality. For the waste-stabilised soil, the short-term leaching potential (72 h) and long-term TCLP leachability (9 months) revealed that Fe-/Al-/Ca-rich AMD sludge and coal fly ash sequestered As through adsorption and (co-)precipitation, while carbonaceous lignite stabilised Cu with oxygen-containing functional groups. The short-term and long-term leaching of Cu and As into the soil solution was negligible in the presence of the waste materials. However, the waste-stabilised soil did not maintain sufficient Cu stability in the TCLP tests, in which acetate buffer induced significant mineral dissolution of the waste materials.

Conclusions

These results suggest that chelant-enhanced washing (significant reduction of Cu leachability) may be augmented with subsequent stabilisation with inorganic waste materials (effective control of As leachability), thus minimising the environmental risks of both Cu (heavy metal) and As (metalloid) while preserving the reuse value of the soil. Additional tests under field-relevant conditions are required to provide a holistic performance evaluation.  相似文献   

17.

Purpose

Carbon (C) flux is largely controlled by the highly bio-reactive labile C (LC) pool, while long-term C storage is determined by the recalcitrant C (RC) pool. Soil nitrogen (N) availability may considerably affect changes of these pools. The aim of this study was to investigate the effects of N treatments on soil LC and RC pools.

Materials and methods

A field experiment was conducted in a city lawn soil for 600 days with three N treatments, i.e., the control (0 kg N ha?1 year?1), low-N (100 kg N ha?1 year?1), and high-N (200 kg N ha?1 year?1) treatments. As the N source, NH4NO3 solution was added to soil surface monthly. Measurements of LC, RC, and other soil biochemical properties, including pH, soil respiration rates, microbial biomass, and enzymes activities, were taken during the experiment period.

Results and discussion

The low-N and high-N treatments increased 6.3 and 13% of the LC pool, respectively, which was caused by decreased microbial biomass and soil respiration rates under the N treatments. By contrary, the low-N and high-N treatments decreased 5.9 and 12% of the RC pool, respectively. The N addition treatments enhanced phenol oxidase activities. The enhanced oxidase activities decreased new RC input and the increased dissolved organic C stimulated RC pool decomposition. The LC and RC pools were highly influenced by the N treatments, whereas effect of the N treatments on soil organic C was not significant. The N addition treatments also caused soil acidification and reduced bacterial biomass proportion in the soil microbial composition.

Conclusions

The N addition increased the LC pool but decreased the RC pool in the soil. These changes should greatly impact soil long-term C storage.  相似文献   

18.

Purpose

Nitrogen reduction in a eutrophic river canal using bioactive multilayer capping (BMC) with biozeolite and sand was examined through laboratory incubation experiments over 121 days.

Materials and methods

Biofilm formation on zeolite was cultivated by a mixed culture containing isolated heterotrophic nitrifiers (Bacillus sp.) and aerobic denitrifiers (Acinetobacter sp.). Two combination methods of biozeolite and sand (with two grain sizes) were used in the experiments: combination I had biozeolite on top of sand, while combination II had sand on top of biozeolite.

Results and discussion

BMC not only completely inhibited ammonium release from sediment but also reduced total nitrogen (TN) in the overlying water and sediment. On day 24, the reduction efficiencies of TN in overlying water by BMC were 60–82 %. After day 24, the long-term effectiveness of nitrogen reduction by BMC using combination II was found to be significantly better than that using combination I. Fine sand used for BMC was found to be superior to coarse sand in nitrogen reduction. Fine sand on the upper layer could strengthen biological denitrification of the biozeolite layer. The optimal BMC could reduce the amount of biozeolite and thus the costs of the technique. The TN reduction efficiency of sediment by the optimal BMC was up to 13 %.

Conclusions

BMC with biozeolite under the fine sand was found to be a feasible technique to reduce N in a eutrophic river canal.  相似文献   

19.

Purpose

Nitrous oxide (N2O) is produced naturally in soils through microbial processes of nitrification and denitrification. In recent years, the long-term application of nitrogen-heavy fertilizers has led to the acidification of tea orchard soils with high N2O emission. The present research aimed at finding out which process (nitrification or denitrification) dominates in N2O production, whether certain fertilizer managements could reduce N2O emission, and the effects of fertilizer management on the abundance of functional genes.

Materials and methods

Two nitrification inhibitors, 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD), combined with different N fertilizers (ammonium sulfate and potassium nitrate) were applied to highly acidic tea orchard soil in an aerobic incubation experiment. Both amoA and nosZ gene abundances from different treatments were determined by quantitative PCR. An anaerobic nitrate effect test was carried out using C2H2 inhibition method.

Results and discussion

The application of nitrate fertilizers significantly (P?<?0.05) enhanced total N2O emission. A linear regression analysis between total N2O emission and average nitrate contents indicated that denitrification is the dominant source of N2O in this tea orchard soil. In the anaerobic incubation, no significant difference of N2O emission was observed between KNO3 and no KNO3 treatments before 96 h. Quantitative PCR revealed lower copy numbers of nosZ in nitrate-associated fertilizer-treated soils than the soils from other treatments. Compared with the control, ammonium fertilizers with DCD or DMPP significantly (P?<?0.05) inhibited nitrate production as well as N2O.

Conclusions

These results showed that denitrification is the dominant source of N2O in this highly acidic soil. Nitrate addition could significantly inhibit the abundance of nitrous oxide reductase, therefore causing high N2O emission. The application of ammonium fertilizers with DCD or DMPP could significantly reduce N2O emission, possibly due to the effective inhibition of nitrate production.  相似文献   

20.

Purpose

Previous studies in the Mezquital Valley evidenced that irrigation with untreated sewage effluent supplies two- to tenfold larger nitrogen doses to crops than common fertilizer recommendations. However, nitrate concentrations in the groundwater are only slightly above threshold concentrations for drinking water. To understand the N dynamics in this agroecosystem, we quantified nitrogen inputs, outputs, and transformations within the rooting zone and in the vadose zone down to the aquifer (i.e., in the critical zone).

Materials and methods

Single irrigation events were monitored in three different fields cropped with either annual rye grass (Lolium rigidum) or oats (Avena sativa L.) harvested for fodder. For each irrigation event, the total amount of water entering and leaving the field was quantified with a flowmeter. Soil pore water was collected with either microsuction cups or observation wells and groundwater was sampled at two wells. All water samples were analyzed for total nitrogen (Nt), ammonium nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N), chloride (Cl?1), and pH. Organic N was calculated as the difference between total N and inorganic N. The water tension and the soil water content were monitored before, during, and after the irrigation with tensiometers and TDR probes, respectively, installed at different depths and at three sites within each field. Batch experiments were conducted to assess the NH4 + adsorption capacity of the soils.

Results and discussion

The irrigations added 537 to 727 kg ha?1 N in form of organic N (40 %) and NH4 +–N (60 %) to the fields. Crops absorbed 65 % of the N and 31 to 66 kg NO3 ?–N ha?1 leached out beyond the rooting zone (>40 to 130 cm). Batch experiments evidenced an ammonium adsorption capacity of 43 and 53 % of the input ammonium mass. Nitrification dominated over denitrification as the water infiltrated through the soil, evidenced by changes in nitrate concentrations and pH values in the soil pore water. The behavior of the total N/Cl ratio with depth indicated possible N losses due to NH3 volatilization at the field surface, a temporal withdrawal of N from the soil solution due to NH4 +–N adsorption in the rooting zone, as well as probable denitrification losses in the vadose zone.

Conclusions

Although the studied agroecosystem muses the large N inputs relative efficiently, between 7 and 10 % of the added N with each irrigation leaches beyond the crop root zone as nitrate. This is triggered by overflow irrigation, since up to 8,699,000 L of water with N concentrations of up to 50 mg total N L?1 infiltrate rapidly through macropores beyond the rooting zone. Additionally, ammonia volatilization and denitrification seem to be occurring. The latter could provide a self-cleaning potential to the system, if it reaches N2 and needs further verification. Nevertheless, N inputs to the system should match crop uptake to avoid groundwater and atmospheric pollution.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号