首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire retardancy of melamine-modified urea–formaldehyde resin (MUF) containing intumescent fire-retardant ammonium polyphosphate (APP) (MUF/APP) was conducted by cone calorimeter with surface treatment of medium density fiberboard (MDF). The results showed that the six MUF resins synthesized with different F/(M + U) and M/U molar ratios containing APP significantly improved the fire retardancy of the MDF by prolonging ignition time, reducing heat release rate and total heat release, and decreasing mass loss rate. The fire-retardant properties of the six synthesized MUF/APP acted differently even though each MUF resin containing the same mass ratio of APP. The melamine content in the MUF should not be too high, otherwise it would decrease the fire-retardant properties of MUF/APP. Based on this study, the higher the APP amounts, the better the fire-retardant performance of the resin was. The fire retardancy of MUF/APP increased with the increase in the amount of glue that spread on the material surface. However, only the amount of glue spread exceeded 250 g/m2, whereas the ability of MUF/APP in inhibiting heat release did not increase significantly any longer.  相似文献   

2.
Lignin containing substantial aromatic rings and high content of carbon has been employed as carbonizing agent to investigate the flame retardancy in the lignin/ammonium polyphosphate (APP) intumescent flame retardant (IFR) system. In addition, owing to the abundant phenolic and aliphatic hydroxyl groups, lignosulfonate, which is considered as a renewable aromatic macropolyols, substituted part of diethylene glycol (DEG) and copolymerized with isocyanate to produce lignosulfonate-based rigid polyurethane (LRPU) foams. Thermal stability was characterized by thermogravimetric analysis (TGA), and flame retardancy was investigated by limiting oxygen index (LOI) and cone calorimetry testing (CCT). Lignosulfonate increases thermal stability of LRPU foams and LRPU containing 15 wt% of lignosulfonate based on DEG (L15RPU) give rise to the best thermal stability. When 15% of lignosulfonate incorporated in the LRPU, reduced the heat release rate (HRR) and total heat release (THR) value 21 kW/m2 and 13 MJ/m2, respectively, and postponed 96 s time-to-peak carbon monoxide production than that of pure DEG rigid polyurethane (RPU) foam, the LOI values increased progressively with lignosulfonate content increasing. These results showed that lignosulfonate polyol may substitute polyol to produce lignosulfonate-based RPU foam and the presence of lignosulfonate could improve the flame retardancy. The mass loss gradually decreases with increasing APP addition, and the highest char yield was obtained from LRPU5 foam which at the lignosulfonate-to-APP ratio is 1:5. At the lignosulfonate-to-APP ratio of 1:5, the LOI value increased over 30%, and the HRR value reduced and the time-to-peak HRR postponed significantly. In addition, LRPU5 foams give rise to the lowest effect heat combustion (EHC) value, less smoke, and carbon monoxide (CO) production. Lignosulfonate acts as carbonizing agent in the lignosulfonate/APP IFR system, and the best fire retardancy is obtained at 1:5 of lignosulfonate-to–APP ratio.  相似文献   

3.
Wood-based materials are fabricated with adhesives composed of various materials derived from fossil fuels. It is difficult to identify replacements for these chemical adhesives. This study explored nanofiber technologies as an alternative to these adhesives. In this study, we focused on reinforcement effects of lingo-cellulose nanofiber (LCNF) on fiberboards made from softwood and hardwood fiber. We discuss the density effects of reinforcement with LCNF because the density of medium-density fiberboard (MDF), which is widely used for construction, is standardized at about 0.60–0.80 g/cm3. Fiberboards were manufactured with three densities (0.60, 0.75, and 1.00 g/cm3). For softwood fiberboards, the bending properties for LCNF-mixed boards were higher than those for the control fiberboards at all densities. In this paper, control fiberboard means fiberboard with fiber only. For hardwood fiberboards, the bending properties for LCNF-mixed fiberboard for 1.00 g/cm3-density board were higher than those for the control fiberboard. For internal bond strength (IB), the IB for LCNF-mixed fiberboard was higher than that for the control fiberboard. The thickness swelling (TS) and weight change (WC) with water absorption for fiberboards containing LCNF were lower than those for control fiberboards. As a conclusion, physical and mechanical properties of the resulting fiberboards were significantly improved with the addition of LCNF, especially for softwood fiberboards, due to close binding between LCNF and wood fibers.  相似文献   

4.
The object of this study was to compare the mass concentration of airborne dust during circular sawing of five wood-based materials: solid sugi (Cryptomeria japonica) lumber, tropical hardwood plywood, softwood plywood, particleboard, and medium-density fiberboard. Specimens were sawn at a constant feed per tooth (0.05 mm) using two saw speeds. The mass concentration of airborne dust of diameter 7.07 μm or less (respirable dust) was measured with a light-scattering dust monitor. The mass concentration showed a log-normal distribution, and the geometric means of mass concentration at saw speeds of 2000 and 3000 rpm were 2.33 and 2.89 mg/m3 for tropical hardwood plywood, 1.13 and 2.84 mg/m3 for particleboard, 0.91 and 2.28 mg/m3 for medium-density fiberboard, 1.09 and 1.38 mg/m3 for softwood plywood, and 0.32 and 0.66 mg/m3 for sugi lumber. The mass concentration for all five wood-based materials increased with the revolution speed of the circular saw.  相似文献   

5.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

6.
Using intumescent coatings on wood-based materials is an effective method for fire safety. Previous studies have demonstrated that the formulation of components strongly influences the performance of coatings. This study investigated the effect of intumescent formulation of vinyl acetate-acrylic coating on flame retardancy of plywood. The fire retardancy of materials was assessed by both heat release and CO and CO2 emissions. The CO and CO2 emissions have not been used frequently to rank materials; the highly toxic CO and CO2 may cause most fire fatalities. The fire retardancy of coatings on plywood was assessed by a cone calorimeter. Total heat release and time to peak heat release rate were the two primary parameters. The data show that low contents of binder resin (BR) and foam producing substance (FPS) decreased total heat release and lengthened time to peak heat release rate. Additionally, low BR and FPS content can form an ideal char layer. The ideal char layer significantly decreased the CO and CO2 emission. The mechanism to achieve better fire performance was verified by thermogravimetrical analysis exhibiting lower weight loss. Moreover, evaluated by 31P NMR, the low BR and FPS content can extend the survival duration of phosphor-carbonaceous chars. The results provide information for designing vinyl acetate-acrylic emulsion coating.  相似文献   

7.
Most waste of medium density fiberboard (MDF) is burnt, which could release toxic gases and pollutants to the environment. So, the re-using waste of MDF is highly desired. The nitrogen atoms of waste medium density fiberboard originate from urea–formaldehyde resin adhesive used in the manufacturing process, so nitrogen-enriched activated carbons could prepared easily. Nitrogen-enriched activated carbons were prepared from waste MDF by potassium hydroxide. The activation temperature was ranged from 600 to 900 °C, and the chemical agent/waste MDF varied from 1 to 5. Iodine number was used to evaluate the adsorption ability of waste MDF activated carbons. The pore properties including surface area, pore volume and pore size distribution were determined by N2 adsorption. The method of elemental analysis and XPS were used to estimate how nitrogen functional groups changed with different activation conditions. The results showed that the adsorption of iodine number of activated carbons was ranged from 661 to 1350 mg/g. The surface area of waste MDF activated carbons was different from 941 to 1876 m2/g and total pore volume was from 0.455 to 0.949 cm3/g. The pore size distribution indicated that waste MDF activated carbons included both micropores and mesopores, and the analysis of element implied that the contents of nitrogen varied from 0.41 to 2.31 %.  相似文献   

8.
Rice hull–sawdust composite boards were manufactured for sound-absorbing boards in construction. The manufacturing parameters were target density (400, 500, 600, and 700?kg/m3) and rice hull content as percent weight of rice hull/sawdust/phenol resin (10/80/10, 20/70/10, 30/60/10, and 40/50/10). Commercial gypsum board and fiberboard were also used as comparative sound-absorbing materials. The average modulus of rupture (MOR) of the board with a density of 700?kg/m3 and rice hull mixing ratio of 10% was 8.6?MPa, and that of the board with a 400?kg/m3 board density and a rice hull mixing ratio of 40% was 2.2?MPa. The MOR increased with increasing board density or decreasing rice hull mixing ratio. The sound absorption coefficients of some boards (400?kg/m3 and 10%, 500?kg/m3 and 30%, and 500?kg/m3 and 40%) were better than those of the commercial 11-mm-thick gypsum board. Thus, it is concluded that rice hull–sawdust composite boards may be implemented as sound-absorbing barriers in construction due to their high sound absorption coefficients.  相似文献   

9.
探讨了在由双氰胺、磷酸、硼化物等配制的阻燃剂处理的杉木间伐材单板生产阻燃型层压板的工艺和性能.分析了各阻燃处理材的阻燃性能和热压工艺对杉木间伐材层压板胶合强度的影响,并检测了甲醛释放量.结果表明:该阻燃层压板达到了国标难燃一级标准;其胶合强度和游离甲醛两项指标均达到室内用材的要求.  相似文献   

10.
Fire resistance of thick wood-based boards   总被引:1,自引:0,他引:1  
Thick wood-based boards are used as construction materials for walls and floors in Japan. In this study, fire resistance tests (ISO 834-1) and cone calorimeter tests (ISO 5660-1) were conducted for thick plywood, particleboard, and medium density fiberboard with sample thicknesses of about 28–30mm, and their suitabilities for quasi-fireproof or fire-preventive structures were evaluated. In the ISO 834-1 fire resistance test, the heat-shielding performance (insulation criterion) for walls was evaluated and the results showed that the larger the apparent density of a woodbased board, the higher its insulation performance. The insulation performance of thick wood-based boards in the fire resistance test could be forecast from the results of the cone calorimeter test, especially when the second peak of heat release rate appeared. In the cone calorimeter tests, the surface layer density of the plywood, particleboard, and medium density fiberboard was the dominant parameter for the time to ignition and initial heat release rate. These results indicate that thick wood-based board is a suitable fire-preventive construction material. Part of this study was presented at the Annual Meeting of the Architectural Institute of Japan, Hokkaido, Japan, August 2004  相似文献   

11.
Wood polymer nanocomposites (WPNCs) based on simul wood (Bombex ceiba, L.) were prepared by impregnation of styrene acrylonitrile copolymer, γ-methacryloyloxy trimethyl silane-modified TiO2, SiO2 nanoparticles and nanoclay intercalating mixture through vacuum impregnation. The impact of nanofillers on the physical properties, flame retardancy, water resistance, anti-swelling efficiency and biodegradability of the resultant WPNCs was investigated. Remarkable enhancement in wood properties such as flame retardancy, water resistance and anti-swelling efficiency was achieved with the treatment. The results showed that all the properties were maximum for wood samples treated with SAN/TiO2 (0.5 %)/SiO2 (0.5 %)/nanoclay (0.5 %). The presence of TiO2 nanoparticles in WPNC exhibited antibacterial activity. The resistance to biodegradation was observed by incorporation of nanofillers into wood.  相似文献   

12.
The effectiveness of air injection for preventing the blowout of particleboards manufactured using a radio-frequency hot press was investigated by evaluating the board properties under artificially created conditions that were conducive to blowout. For evaluation, 10-mm-thick boards with densities of 0.7 and 0.8 g/cm3 and 20-mm-thick boards with a density of 0.7 g/cm3 were manufactured. Pressing times for the 10-mm-thick boards were 2, 4, 6, and 8 min, and those for the 20-mm-thick boards were 4, 6, 8, and 10 min. Without air injection, blowout occurred in all manufactured boards. With air injection, however, blowout did not occur in the 10-mm-thick boards with a density of 0.7 g/cm3. Moreover, air injection prevented blowout even when the board density and board thickness were increased to 0.8 g/cm3 (for 10-mm-thick boards) and 20 mm (the density was kept at 0.7 g/cm3), respectively. Air-injection radio-frequency pressing reduced the pressing time from 4 to 2 min for 10-mm-thick boards, and from 6 to 4 min for 20-mm-thick boards. Moreover, this reduction in the pressing time was achieved without a large reduction in the internal bond strength of the boards.  相似文献   

13.
A method to detect cracks near the surface of wooden boards has been developed where the change in surface temperature of the wood sample is monitored using an infrared camera following momentary heating by a flash. Cylindrical holes simulating cracks were drilled into the wood samples, and blackbody paint was painted onto the surface of the samples to assist flash absorption. This method uses the dynamic heat transport process from the blackbody paint to the surface of the wood sample to the cracks over a short timescale. The theoretical foundations of the observation method were outlined, and the technique was verified in experiments with samples of Cercidiphyllum japonicum, Western red cedar, Japanese cedar, Balsa, and medium-density fiberboard. The developed technique is able to detect the presence of holes located near the surface of some samples. However, this method could not detect the presence of holes in Balsa nor holes located deeper than 1 mm from the surface of the sample. A theoretical analysis of these phenomena was provided to help interpreting them.  相似文献   

14.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

15.
We propose a non-destructive method to predict the oven-dry density of Sugi (Cryptomeria japonica D. Don) using near infrared (NIR) spectroscopy so as to calibrate a commercial moisture meter. A prediction model for oven-dry density was developed using NIR spectra obtained from Sugi samples with a known density. The density of air-dried Sugi boards was predicted with the developed model. Then, the moisture content (MC) of the boards was measured by a hand-held capacitance-type and an in-line microwave moisture meters. For each board, the moisture meters were calibrated by the predicted density. The predicted density was correlated with the measured one with an R 2 of 0.81 and a standard error of prediction (SEP) of 15.3 kg/m3 within the measured density of 279.2–436.4 kg/m3, indicating that the developed model was applicable for predicting oven-dry density of Sugi. The MC readings of both moisture meters showed a good correlation with the oven-dry MC that ranged from 12.1 to 28.9 %. For both moisture meters, the density calibration with the NIR-predicted density gave a higher R 2 and a lower SEP than with the conventional calibration with the mean density. These results demonstrate that the present density calibration using NIR spectroscopy could improve the performance of the moisture meters for the air-dried Sugi boards with varying densities.  相似文献   

16.
The development of oriented fiberboards made from kenaf (Hibiscus cannabinus L.) and their suitability as a construction material has been investigated. Three different types of boards consisting of five layers with individual orientations were prepared using a combination of low molecular weight and high molecular weight phenol-formaldehyde (PF) resin for impregnation and adhesion purposes. Additional boards with the same structure were prepared using high molecular weight PF resin only. The mechanical properties of the boards have been examined as well as their resistance against fungal decay and termite attack. All kenaf fiberboards showed elevated mechanical properties compared with medium-density fiberboard made from wood fibers, and showed increased decay and termite resistance. Differences in the decay and termite resistance between the board types were caused by the presence of the low molecular weight PF resin for the impregnation of the fibers. No significant difference was found for the mechanical properties. The effect of the PF resin for impregnation was much clearer in fungal decay resistance than for termite resistance; however, fiber orientation had no effect on both decay and termite resistance of the specimens.  相似文献   

17.
Acrylic emulsion based painted red lauan plywood (Parashorea spp.) is most commonly used for indoor furnishings. This study investigated the enhancement of the fire retardance of painted plywood by interaction among four major components of intumescent formulation: (1) acrylic emulsion resin as binder resin (BR), (2) pentaerythritol as carbonizing substance (CS), (3) melamine as foam producing substance (FPS) and (4) ammonium polyphosphate as dehydrating agent (DA). Effects of changing BR/CS ratios (designated as FRA series) and FPS/DA ratios (designated as FRM series) on flame-retardance of painted plywood were investigated using a cone calorimeter. The intumescent formulation significantly enhanced fire retardancy of painted plywood by exhibiting lower peak release rates and longer times to reach peak release rates, compared with uncoated plywood (UP) panel and plywood panel solely coated with acrylic emulsion resin. Lower BR content in the FRA series and lower FPS content in the FRM series were shown to enhance flame retardancy of painted plywood. The positive correlation between total heat release values under increasing combustion duration and incremental changes of BR and FPS contents in two series further verified the above findings. Consistent with the observed flame retardancy enhancement of painted plywood, lower heats of combustion and weight losses for paints in the FRM series were also identified by oxygen bomb calorimeter measurements and thermogravimetrical analysis. Infrared analysis of the chars indicated the formation of phosphate ester linkages with the lowest BR content in the FRA series and the lowest FPS content in the FRM series showing superior enhancements of flame retardancy for painted red lauan plywood.  相似文献   

18.
NSCFR flame retardant is one of key factors of non-smoke combustible wood-based materials.Thermal analysis,cone calorimetry,Py-GC/MS, scanning electron microscopy(SEM) were utilized to investigate the flame-retardation and smoke-suppression characteristics and mechanisms of NSCFR flame-retardant.The results show that NSCFR flame-retardant could significantly shorten the combustion duration of wood-based materials and completely eliminate the second peak of heat release rate curve,greatly reduce heat release rate, total smoke release,mass loss rate,specific extinction area,and carbon monoxide production and carbon dioxide production,obviously enhance the mass of combustion char residue,effectively retarding the combustion and inhibiting smoke release of the wood-based material;NSCFR flame-retardant exhibits the ability of flame retardancy on wood by the conjunct mechanism of capturing free radical, diluting combustible gas,and catalyzing charring; NSCFR flame-retardant displays smoke suppression effects on wood by absorption action of nano alveolate structure together with the active catalyzing action of ironic molybdate.  相似文献   

19.
>Changes in carbon (C) after fire were measured in seven southern boreal upland forest stands during the five immediate post‐fire years and 23 years after the fire. Pre‐fire above‐ground C mass of the stands was estimated. Combustion losses were 19% of the pre‐fire above‐ground C mass (8.4 kg m?2), and an additional 4% of that C mass was lost in the following 3–4 years. After 23 years, neither C mass of understory (0.1 kg m?2) nor standing snags (0.3 kg m?2) differed from that estimated before the fire; tree C was less (2.4 vs. 6.0 kg C m?2), and forest floor (2.5 vs. 1.4 kg C m?2) and coarse woody debris (1.7 vs. 0.7 kg C m?2) C were higher. Above‐ground C mass was 84% of pre‐fire mass. There were no measured changes in surface soil C following the fire (2.9 kg C m?2). Total C mass, including surface soil, was 10.2 kg m?2 at 23 years or 91% of the estimated pre‐fire C. Although gross fluxes of C followed the fire, massive net losses of C did not occur either immediately or in the two decades after fire. Dynamics of C differed among the stands. Data from either a single stand or a chronosequence in space can lead to different conclusions than those derived from multiple stands through time.  相似文献   

20.
Emulsion resins are widely used in wood-based materials for indoor furnishings. Previous studies have demonstrated that the ability of a material to retard flame arises from the interactions between four major components: i.e., binder resin (BR); carbonizing substrate (CS); foam-producing substance (FPS); and dehydrating agent (DA). Fire performance as influenced by wetting and drying cycle (WDC) treatment has not yet been reported. This study aimed to compare the fire performance of materials coated with EVAc (ethylene vinyl acetate copolymer) and PVAc (polyvinyl acetate copolymer) emulsion resins of differing BR/CS ratios, subjected to investigation by cone calorimeter. Intumescent formulation significantly enhanced the fire retardancy of painted plywood by exhibiting lower peak heat release rates (PHRR) and longer time to reach peak release rates. Additionally, lower BR content in the fire retardant systems further enhanced flame retardancy. The fire retardancy decreases with increasing the WDC treatment, caused by the weight loss of the coating materials. Infrared (FT-IR) analysis demonstrated that lower BR content extends the survival duration of the phosphorcarbonaceous structure of chars. The findings in this study enhance the state-of-the-art understanding of the effect of the intumescent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号