首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Isotherms of mono- and polyelement adsorption of Cu2+, Pb2+, and Zn2+ by an ordinary chernozem were described by the Langmuir equation. The values of the adsorption constant k decreased in the range Cu2+ > Pb2+ ≫ Zn2+ for the monoelement adsorption from nitrate and acetate salt solutions, Cu2+ > Pb2+ > Zn2+ for the polyelement adsorption from nitrate solutions, and Pb2+ > Cu2+ ≫ Zn2+ for the polyelement adsorption from acetate solutions. The maximum adsorption (C max, ∞) of individual cations at the polyelement contamination was always lower than at the monoelement contamination because of the mutual competition. At the same time, the values of k for the polyelement adsorption were higher than those for the monoelement adsorption because heavy metals (HMs) interact with most of the specific adsorption centers. It was shown that the ratio between the content of exchangeable cations displaced from the soil exchangeable complex (SEC) into the solution and the content of adsorbed HMs decreased with the increasing concentration of adsorbed HMs. These values could be higher (for Cu2+), equal, or lower than 1 (for Pb2+ and Zn2+). In the former case, this was due to the dissolution of readily soluble salts at low HM concentrations in the SEC. In the latter case, this was related to the adsorption of associated HMs and the formation of new phases localized on the surface of soil particles at high HM concentrations in the SEC.  相似文献   

2.
The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by soils and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and polyelement contamination decreased with the decreasing proportion of fine fractions in the soil. The adsorption capacity of the Lower Don chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem ∼ clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions (C max and k), the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem > loamy chernozem > loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by soils and their particlesize fractions showed that the extensive adsorption characteristic, namely, the maximum adsorption (C max), was a less sensitive parameter characterizing the soil than the intensive characteristic of the process—the adsorption equilibrium constant (k).  相似文献   

3.
The effect of different anions on the balance of heavy metal cations in the soil-solution system has been assessed under model laboratory conditions. It has been found that the uptake of the Cu, Zn, and Pb cations by an ordinary chernozem from solutions of different salts is accompanied by the displacement of the exchangeable cations to the solution in the following order: Ca2+ > Mg2+ > Na+ > K+. The sum of the displaced exchangeable cations in most cases exceeds the amount of the adsorbed heavy metal cations. According to the effect of the anions on the displacing capacity of the metal cations, the following series are formed: for copper, SO 4 2? ? Cl? > OAc? > NO 3 ? ; for lead, Cl? ? NO 3 ? > OAc?; and, for zinc, SO 4 2? ? Cl? ? OAc? > NO 3 ? .  相似文献   

4.
The present study was conducted in tropical Sal forest ecosystem of the Doon valley in the Indian Himalayas to assess the critical load of sulfur and nitrogen and their exceedances. The observed pattern of throughfall ionic composition in the study are Ca2+>K+>Mg2+>Cl?>?HCO3?>?Na+>NO 3 ? >?SO 3 2? ???NH 4 + >F?. The sum of cation studied is 412.29 ??eq l?1 and that of anions is 196.98 ??eq l?1, showing cation excess of 215.31 ??eq l?1. The cations, namely Ca2+, Mg2+, K+, Na+, and NH 4 + , made a contribution of about 67% of the total ion strength, where as anion comprising of SO 4 2? , Cl?, NO 3 ? , and HCO 3 ? contributed 33%. The chief acidic components were Cl?C (12%) and HCO 3 ? (8%), while the presence of SO 4 2? (5%) and NO 3 ? (6%), respectively. Percentage contribution of bole to total aboveground biomass was ??72.38% in comparison to 2.24?C2.93% of leaf biomass, 10.34?C10.96% of branch biomass and 13.21?C17.07% of bark biomass. There was high and significant variation (P?<?0.001) in the total aboveground biomass produced at different sites. The aboveground net primary productivity (ANPP) in these sites ranged between 2.09 and 9.22 t ha?1 year?1. The base cations and nitrogen immobilization was found to be maximum in bole. The net annual uptake of the base cations varied from 306.85 to 1,311.46 eq ha?1 year?1 and of nitrogen from 68.27 to 263.51 eq ha?1 year?1. The critical appraisal of soil showed that cation exchange capacity lied between 18.37 and 10.30 Cmol (p+) kg?1. The base saturation percentage of soil was as high as 82.43% in Senkot, whereas in Kalusidh it was just 44.28%. The local temperature corrected base cation weathering rates based on soil mineralogy, parent material class, and texture class varied from 484.15 to 627.25 eq ha?1 year?1, showing a weak potentiality of the system to buffer any incoming acidity and thus providing restricted acid neutralizing capacity to keep the ecosystem stable under increased future deposition scenarios in near future. The appreciable BS of the soil indicates the presence of intense nutrient phytorecycling forces within this climate and atmospheric deposition in replenishing base cations in the soil, which includes intrinsic soil-forming processes, i.e., weathering. The highest value of critical load for acidity was 2,896.50 eq ha?1 year?1 and the lowest was 2,792.45 eq ha?1 year?1. The calculated value of the minimum critical loads for nitrogen varied from 69.77 to 265.01 eq ha?1 year?1, whereas the maximum nitrogen critical load ranged between 2,992.63 and 4,394.45 eq ha?1 year?1. The minimum and the maximum critical loads of sulfur ranged between 2,130.49 and 3,261.64 eq ha?1 year?1 and 2,250.58 and 3,381.73 eq ha?1 year?1, respectively. The values of exceedance of sulfur and nitrogen were negative, implying that in the current scenario Sal forests of the Doon valley are well protected from acidification.  相似文献   

5.
The performance of various filters used for determining inorganic species (heavy metals, light metals, anions and ammonium ion) in airborne particulates was comparatively assessed. Filters used in the determination of Ca2+, Mg2+, Na+, K+, Fe3+, Zn2+, Pb2+, Cr3+, Ni2+, V (V), Mn2+ and Cd2+ were attacked by acid extraction (glass microfibre filters, GF/A), acid extraction and microwave oven digestion (quartz filters, QM-A), and muffle furnace calcination and microwave oven digestion (Whatman-41 cellulose filters, W-41). The behaviour of the different filters tested towards aqueous extraction for the determination of anions (Cl?, NO 3 ? , SO 4 ? , ammonium ion and light metals (Ca2+, Mg2+, Na+ and K+) was also studied and the results obtained for the light metals were compared with those provided by acid attack. All metals except vanadium were determined by ICP-AES; cadmium, lead and vanadium were analysed for by GFAAS; anions were quantified by ion chromatography (SO 4 ? was also measured by ICP-AES); and ammonium ion was determined by the Indophenol Blue method.  相似文献   

6.
The authors reported that the relative bonding strength between ligand of soil colloid surface and cations could be obtained easily by the measurement of MCSA, and that the MCSA corresponded to the constant of Langmuir's adsorption isotherm equation.

The relative bonding strength of cations with respect to kaolinitic soil clay at pH 6 was, Cr3+>Fe3+, Al3+>Ga8+>Cu8+>Pb2+>Y3+, La3+>Mn2+>Ni2+, Co2+> Zn2+>Sr2+, Mg2+>NH4+, K+, and with respect to colloid with humus coating, Y3+, La3+>Pb2+>Cu2+, and the other orders were same.

The solubility of cations in soil colloid aqueous dispersion system was calculated from the values of MCSAs, and considered as follows, Y3+, La3+, Cu3+, Pb3+, Mn2+, Ni2+, CO2+: concentration in soil solution and soil geochemical mobility may be regulated by the specific adsorption reaction, Zn2+, Mg2+, Sr2+, K+, NH4+: concentration in soil solution and soil geochemical mobility may be regulated by the non-specific adsorption reaction, but at neutral to alkaline condition, Zn2+ and Mg2+ may specifically adsorb on soil, clays, Fe3+, Cr3+, Al3+, Ga3+: concentration in soil solution and soil geochemical mobility may be regulated by the solubility of their oxide hydrates.  相似文献   

7.
Spherical biochar derived from saccharides (glucose, sucrose, and xylose) was prepared through two steps: pre-hydrothermal carbonization at 190 °C and calcination at low temperatures (200–325 °C). The spherical biochar was characterized by Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared spectroscopy, zeta potential, scanning and transmission electron microscopies, and X-ray diffraction. The result indicated that the spherical biochar exhibited low S BET (15–22 m2/g), but abundant superficial active oxygen-containing functional groups. The spherical biochar possessed a negatively charged surface within solution pH 2.0–11. The adsorption process of Pb2+, Cu2+, and methylene green 5 (MG5) was strongly dependent on the solution pH and reached fast equilibrium at approximately 60 min. The maximum Langmuir adsorption capacity (Q°max) exhibited the following order: glucose-biochar > sucrose-biochar > xylose-biochar prepared at 300 °C. The selective adsorption order of glucose-biochar was Cu2+ (0.894 mmol/g) > Pb2+ (0.848 mmol/g) > MG5 (0.334 mmol/g). The electrostatic attraction played a determining role in the adsorption mechanism of pollutant cations. The adsorption of anionic dye (acid red 1) on the spherical biochar was negligible because of electrostatic repulsion. The spherical biochar can serve as a newer and promising adsorbent to remove toxic pollutant cations from water media.  相似文献   

8.
A study was carried out on the adsorption of Co2+, Cu2+, Pb2+, and Zn2+ ions on mixed Fe-Al oxides inthe absence or presence of increasing concentrations of oxalate or tartrate. Mixed Fe-Al oxides were prepared by precipitating at pH 5.5 mixtures of Fe and Al ions at initial Fe/Al molar ratios (R) of 0, 1, 2, 4, 10 and ∞ (R0, R1, R2, R4, R10 and R∞).The oxides aged 7 days at 20 °C or 30 days at 50 °C showed different chemical composition and physico-chemical and mineralogical properties. All the mixed Fe-Al oxides showed presence of poorly crystalline materials (ferrihydrite) even after prolonged aging. The heavy metals wereselectively adsorbed on the oxides. For all the precipitates aged7 days at 20 °C, the selectivity sequence wasPb2+> Cu2+ > Zn2+ > Co2+, but the pH at which 50% ofeach cation was adsorbed (pH50) was different from sample tosample. It was found that usually the greater the amounts of Fe in Fe-Al gels the lower the pH50 for each metal, but the adsorption of a heavy metal was not linearly related to Fe content. The pH50 usually did not change significantly when the oxides were aged 30 days at 50 °C. Competitive adsorption of Cu and Zn on ferrihydrite (R∞) showed thatCu strongly prevented Zn adsorption even at an initial Zn/Cu molar ratio of 8, whereas Cu sorption was not inhibited. In thepresence of oxalate (OX) or tartrate (TR) (organic ligand/Pb molar ratio (rL) from 0 to 7) the quantities of Pb adsorbedon the Fe-Al oxides usually increased with increasing rL. The adsorption increase of Pb was particularly high on the oxidesricher in Fe (R4-R∞), but a significant increase was also observed on R0-R2 samples. The adsorption of Pb on the oxides hasbeen influenced not only by the presence and concentration of organic ligands but also by the sequence of addition of Pb and tartrate on the sorbents. It has been ascertained that on each oxide the greater amounts of Pb were adsorbed when tartrate wasadded before Pb and usually according to the following sequence: Tr before Pb > Pb before Tr > Pb + Tr > Pb.  相似文献   

9.
The efficiency of UV- and VUV-based processes (UV, VUV, UV/H2O2, and VUV/H2O2) for removal of sulfamethoxazole (SMX) in Milli-Q water and sewage treatment plant (STP) effluent was investigated at 20??C. The investigated factors included initial pH, variety of inorganic anions (NO 3 ? and HCO 3 ? ), and humic acid (HA). The results showed that the degradation of SMX in Milli-Q water at both two pH (5.5 and 7.0) followed the order of VUV/H2O2 > VUV > UV/H2O2 > UV. All the experimental data well fitted the pseudo-first order kinetic model and the rate constant (k) and half-life time (t 1/2) were determined accordingly. Indirect oxidation of SMX by generated ?OH was the main degradation mechanism in UV/H2O2 and VUV/H2O2, while direct photolysis predominated in UV processes. The quenching tests showed that some other reactive species along with ?OH radicals were responsible to the SMX degradation under VUV process. The addition of 20?mg?L?1 HA significantly inhibited SMX degradation, whereas, the inhibitive effects of NO 3 ? and HCO 3 ? (0.1?mol?L?1) were observed as well in all processes except in UV irradiation for NO 3 ? . The removal rate decreased 1.7?C3.6 times when applying these processes to STP effluent due to the complex constituents, suggesting that from the application point of view the constituents of these complexes in real STP effluent should be considered carefully prior to the use of UV-based processes for SMX degradation.  相似文献   

10.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

11.
The results from this research indicate that canola meal (CM) can be used for adsorption of Zn2+, Cd2+, Cu2+, Pb2+and Ni2+from aqueous solutions. The order of sorption for these metals in single metal systems was as follows (molar basis): Zn2+> Cu2+> Cd2+> Ni2+> Pb2+. It was noted that a decrease in the concentration of CM caused a higher metal loading on the meal. Increases in the metal concentration, temperature or pH resulted in increased sorption of the metals by the meal. The systems with identical ratios of CM to Zn2+concentrations, regardless of their levels, resulted in the same amount of metal adsorbed per unit weight of meal. The Freundlich isotherm type model was used in this study and was found to fit the experimental equilibrium concentration data of Zn2+and Cd2+; however, the Langmuir isotherm model fit only the equilibrium data of Zn2+. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) microanalyses revealed that the metal ions were sorbed mainly at the cell wall and only small amounts of ions diffused into the cytoplasm of the CM cells. The Electron Spin Resonance (ESR) tests were inconclusive regarding the direct participation of free radicals in copper sorption.  相似文献   

12.
The adsorption capacity of seven inorganic solid wastes [air-cooled blast furnace (BF) slag, water-quenched BF slag, steel furnace slag, coal fly ash, coal bottom ash, water treatment (alum) sludge and seawater-neutralized red mud] for Cd2+, Cu2+, Pb2+, Zn2+ and Cr3+ was determined at two metal concentrations (10 and 100 mg?L?1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All materials had the ability to remove metal cations from aqueous solution (fly and bottom ash were the least effective), their relative abilities were partially pH dependant and adsorption increased greatly with increasing pH. At equimolar concentrations of added metal, the magnitude of sorption at pH 6.0 followed the general order: Cr3+????Pb2+????Cu2+?>?Zn2+?=?Cd2+. The amounts of previously sorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were very small, but those removed with 0.01 M HNO3, and more particularly 0.10 M HNO3, were substantial. Water treatment sludge was shown to maintain its Pb and Cd adsorption capability (pH 6.0) over eight successive cycles of adsorption/regeneration using 0.10 M HNO3 as a regenerating agent. By contrast, for BF slag and red mud, there was a very pronounced decline in adsorption of both Pb and Cd after only one regeneration cycle. A comparison of Pb and Cd adsorption isotherms at pH 6.0 for untreated and acid-pre-treated materials confirmed that for water treatment sludge acid pre-treatment had no significant effect, but for BF slag and red mud, adsorption was greatly reduced. This was explained in terms of residual surface alkalinity being the key factor contributing to the high adsorption capability of the latter two materials, and acid pre-treatment results in neutralization of much of this alkalinity. It was concluded that acid is not a suitable regenerating agent for slags and red mud and that further research and development with water treatment sludge as a metal adsorbent are warranted.  相似文献   

13.
Humic acid (HA) extracted from a Eustis loamy sand (Psammentic Paleudult, Red Yellow Podzolic soil) was flocculated by titration with Al3+-, Fe3+-, Cu2+-, Zn2+-, Mn2+-, Ba2+-, Ca2+-, and Mn2+-chloride solutions, respectively, to determine possible development of metal-HA complexes, as reported by Flaig et al. (1975), and Tiurin and Kononova (1962). Titration was conducted with HA solutions with an initial pH 11.5 or 7.0. The results indicated that the cations used, except Mg2+, yielded insoluble complexes with HA, irrespective of initial pH. After titration, the pH of the metal-HA flocs was 6.0–7.0, which was expected in view of the presence of cation exchange and buffering capacity of HA compounds. More complex formation through electrovalent and covalent bonding by COO? and phenolic OH groups of the HA molecule was only attained by the use of HA solutions with pH 11.5. On the other hand, less complex formation occurred by the use of HA solutions with an initial pH 7.0, through electrovalent bonding by COO? groups. Differential thermal analysis (d.t.a.) curves of HA showed shifts in temperatures of the main decomposition peak as a result of flocculation with the different metals. Based on the type of the cations involved, the metal-humic acid flocs could be listed in the following decreasing order of thermal stability: Al3+ = Zn2+ = Mg2+ ≥ HA > Ca2+ > Ba2+ > Fe3+ > Cu2+ > Mn2+. A systematic relationship could not be found indicating that trivalent ions resulted in the formation of thermally less stable metal-humic acid flocs than divalent ions, as has been reported for HA-metal complexes. Physical mixtures of HA and metal hydroxides exhibited d.t.a. features resembling those of original (nontreated) HA, but not those of the HA-metal flocs.Infrared spectroscopy revealed increased absorption for COO? vibrations at 1620 and 1400cm?1 in spectrograms of metal-HA flocs compared to that of original humic acid, a phenomenon explained by many authors to be caused by bonding of the metal ions in hydrated form to the carboxyl or phenolic hydroxyl groups or both of the humic acid molecule. HA-flocs formed from solutions with an initial pH 11.5 had identical i.r. spectra compared with those formed from solutions with an initial pH 7.0.  相似文献   

14.
High As groundwater normally contained high concentrations of Cl? and HCO 3 ? . This study examined the effects of Cl?, HCO 3 ? , and As species on As uptake by hyperaccumulator Pteris vittata. Plants were exposed hydroponically to 5.0?mg/L As(III) or As(V) in the presence of 0, 0.5, 1, 2, 5, 10, and 20?mM of Cl? or HCO 3 ? for 10?days. Addition of high Cl? concentrations (>10?mM) slightly inhibited P. vittata growth (biomass), while generally had no significant effect on plant As uptake. High solution pH resulted in reduced plant growth and As uptake, which attributed to the inhibitory effects in HCO 3 ? treatments with the high pH of the high HCO 3 ? concentration. It was speculated that addition of HCO 3 ? (<20?mM) would have no significant effect on plant growth and As uptake. The inhibitory effect of HCO 3 ? on As translocation was less apparent in the As(III) solutions than the As(V) solutions. For the high As groundwater with As(III) as the predominant species, high pH, instead of high concentrations HCO 3 ? and Cl?, was expected to inhibit As uptake. The results suggested that optimum plant growth and maximum As hyperaccumulation could be achieved by adjusting solution pH in the growth media (around 7.2).  相似文献   

15.
In the Vosges Mountains (NE of France), integrated plot-catchment studies have been carried out since 1985 in the Strengbach basin to study the influence of acid atmospheric inputs on surface water quality and element budgets. In this paper, available mid-term time series (1985–1991) have been considered to detect obvious trends, if any, in surface water chemistry and element budgets. Air quality data showed a slight decline for SO2, whereas NO2 slightly increased over the period, but these trends are not very significant. This is in agreement with increased N concentration (mainly as NH 4 + ) and with the stability of SO 4 2? in open field precipitation. Because of a significant decrease in rainfall amount over the period, only inputs of NH 4 + increased significantly whereas H+ and SO 4 2+ inputs declined. In spring and streamwaters, pH and dissolved Si concentration increased mainly as a result of a reduced flow. Na+, K+, Cl? and HCO-3~? concentrations remained stable whereas Ca2+, Mg2+ and SO 4 2+ concentrations declined significantly. Only NO 3 ? concentration increased significantly in springwaters. The catchment budgets revealed significant losses of base cations, Si and SO 4 2? . These losses decreased over the period. Nitrogen was retained in the ecosystem. However, a longer record is needed to determine whether or not changes in surface water chemistry have resulted from short-term flow reductions or long-term changes in input-output ion budgets. This is specially true with N because the decline in SO 4 2? output was accompanied by N accumulation.  相似文献   

16.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

17.

Purpose

TiO2 photocatalytic degradation of tetracycline (TC) in aqueous solution under UV irradiation was investigated as affected by different environmental factors, including cations, anions, organic acids, and surfactants.

Materials and methods

The solution of TC with TiO2 was irradiated by medium mercury lamp. The concentrations of TC and metal ions were analyzed by HPLC and AAS, respectively. The degradation efficiency of TC was calculated based on TC disappearance.

Results and discussion

Photocatalysis was very effective for TC removal. The degradation efficiency of TC was significantly enhanced in the presence of Cu2+/Pb2+, SO4 2?/Cl?, and humic acid (HA) in the examined range, but did no change with Ni2+, Cd2+, or Zn2+. In addition, the results also showed that solution Cu2+ and Pb2+ ions could be reduced during the process, while Ni2+, Cd2+, and Zn2+ were still kept in the solution. However, tannic acid (TA), gallic acid (GA), citric acid (CA), salicylic acid (SA), hydroxypropyl-β-cyclodextrin (HPCD), polyoxyethylene lauryl ether (Brij35), or polyoxyethylenesorbitan monooleate (Tween80) significantly decreased the degradation efficiency of TC.

Conclusions

The photocatalytic approach could be successfully applied to remove TC, and environmental factors significantly influenced its degradation efficiency. It would be useful to understand the environmental behaviors of TC and for the implementation of remediation strategies of TC.  相似文献   

18.
恒电荷土壤胶体对Cu2+ 、Pb2+ 的静电吸附与专性吸附特征   总被引:23,自引:2,他引:23  
杨亚提  张一平 《土壤学报》2003,40(1):102-109
供试土壤胶体对Cu2 、Pb2 的吸附强度用pH50 值表示 ,其大小次序为 :土 >黄绵土、黑垆土 >黄褐土。离子强度实验和表面络合反应机制证明恒电荷土壤胶体对Cu2 、Pb2 的吸附含有专性吸附 ,n值可作为判断专性吸附与静电吸附比例的特征值 ,低pH值时 ,以水解 -络合吸附为主 ;高pH值时 ,以水解 -络合与沉淀吸附为主。静电吸附和专性吸附的比例与pH有关 ,各土壤胶体专性吸附百分数大小为 :黄褐土 >土 >黑垆土 >黄绵土。不同土壤胶体在同一介质中对Cu2 、Pb2 的固有络合常数logKintM 值及固有络合ΔG m 负值大小次序与吸附强度大小一致。在定pH定浓条件下 ,考虑离子之间的相互作用时 ,土壤胶体对重金属离子的吸附过程可用BDM等温式描述。供试土壤胶体对Cu2 、Pb2 专性吸附ΔG m 的大小与固有络合ΔG m 接近且大小次序也一致。  相似文献   

19.
The equilibria as well as the rates of adsorption and desorption of the ions Pb2+, Cu2+, Cd2+, Zn2+, and Ca2+ by soil organic matter were determined in batch experiments as a function of the amount of metal ions added to an aqueous suspension of HCl-washed peat. Simultaneous determination of the metal ions and hydrogen ions in the solution by atomic absorption spectrophotometry and pH-measurements showed that the adsorption of one divalent metal ion by peat was coupled with the release of two hydrogen ions. Since this equivalent ion-exchange process causes a corresponding increase of the electric conductivity of the solution, the rates of the adsorption and desorption processes were determined by an immersed conductivity electrode. The distribution coefficients show that the selective order for the metal adsorption by peat is Pb2+ > Cu2+ > Cd2+≌ Zn2+ > Ca2+ in the pH range of 3·5 to 4·5. The slope of -2, as observed in a double logarithmic plot of the distribution coefficients versus the total solution concentration confirms the equivalence of the ion-exchange process of divalent metal ions for monovalent H3O+ -ions in peat. The absolute rates of adsorption, as well as the rates for the fractional attainment of the equilibrium, increase with increasing amounts of metal ions added. This behaviour is also observed for the subsequent desorption of the metal ions by H3O+-ions. At a given amount of metal ions added, the absolute rates of adsorption decrease in the order Pb2+ > Cu2+ > Cd2+ > Zn2+ > Ca2+, while the rates for the fractional attainment of the equilibrium decrease in the order Ca2+ > Zn2+≌ Cd2+ > Pb2+ > Cu2+. The half times for adsorption and desorption were in the range of 5 to 15 sec.  相似文献   

20.
Abstract

To investigate the activity of free cadmium (Cd2+), copper (Cu2+), lead (Pb2+), and zinc (Zn2+) ions and analyze their dependence on pH and other soil properties, ten contaminated soils were sampled and analyzed for total contents of Cd, Cu, Pb, and Zn (CdT, CuT, PbT, and ZnT, respectively), 0.43 MHNO3‐extractable Cd, Cu, Pb, and Zn (CdN, CuN, PbN, and ZnN, respectively), pH, dissolved organic matter (DOC), cation exchange capacity (CEC), ammonium oxalate extractable aluminum (Al) and iron (Fe), and dissolved calcium [Ca2+]. The activity of free Pb2+, Cd2+, Cu2+, and Zn2+ ions in soil solutions was determined using Donnan equilibrium/graphite furnace atomic absorption (DE/GFAA). The solubility of Cd in soils varied from 0.16 to 0.94 μg L‐1, Cu from 3.43 to 7.42 μg L‐1, Pb from 1.23 to 5.8 μg L‐1, and Zn from 24.5 to 34.3 μg L. In saturation soil extracts, the activity of free Cd2+ ions constituted 42 to 82% of the dissolved fraction, for Cu2+the range was 0.1 to 7.8%, for Pb2+ 0.1 to 5.1% and for Zn2+2 to 72%. The principal species of Cd, Cu, Pb, and Zn in the soil solution is free metal ions and hydrolyzed ions. Soil pH displayed a pronounced effect on the activity of free Cd2+, Cu2t, Pb2+, and Zn2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号