首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以酸枣果肉为原料,利用化学法提取不溶性膳食纤维(IDF)。在单因素实验基础上采用正交实验研究A(Na OH浓度)、B(料液比)、C(提取温度)、D(提取时间)对IDF得率的影响。结果表明,对IDF得率的影响大小为ACBD;IDF最佳提取工艺参数为温度50℃,料液比1︰5 g/m L,Na OH浓度3%,时间40 min,IDF得率可达37.9%,产品为淡黄色粉末,持水力、持油力、膨胀率分别为3.586 7 g/g、2.390 6 g/g和22.2m L/g。  相似文献   

2.
以β-蒎烯为原料,经硼氢化氧化反应合成了桃金娘烷醇,桃金娘烷醇与羧酸在N,N'-二环己基碳酰亚胺/4-二甲氨基吡啶(DCC/DMAP)的催化作用下反应,生成了8个羧酸桃金娘烷醇酯新化合物:乙酸桃金娘烷醇酯(4a)、丙酸桃金娘烷醇酯(4b)、正丁酸桃金娘烷醇酯(4c)、正戊酸桃金娘烷醇酯(4d)、环己烷羧酸桃金娘烷醇酯(4e)、苯甲酸桃金娘烷醇酯(4f)、对甲苯甲酸桃金娘烷醇酯(4g)、对甲氧基苯甲酸桃金娘烷醇酯(4h)。借助FT-IR、1H NMR和ESI-MS对产物进行了结构表征,通过琼脂稀释法对所合成的化合物进行了抑菌活性测试。结果表明,在该系列羧酸桃金娘烷醇酯中,化合物4b、4c、4f、4g和4h对革兰氏阳性菌金黄色葡萄球菌(Staphylococcus aureus)具有一定的抑菌活性,最小抑菌浓度(MIC)为256 mg/L,化合物4a、4b、4c和4e对革兰氏阴性菌大肠埃希氏菌(Escherichia coli)具有抑菌活性,MIC为128~256 mg/L。其中,化合物4a对E.coli的MIC为128 mg/L与新洁尔灭相当。相对于原料β-蒎烯和中间体桃金娘烷醇而言,该系列酯类化合物在抑菌活性上具有一定的提升。  相似文献   

3.
采用室内生物测定和田间药效试验相结合的方法,研究了桃金娘乙酸乙酯提取物与烟碱混配对螺旋粉虱的增效作用。研究结果表明,桃金娘乙酸乙酯提取物(30000mg/L)和烟碱(0.03mg/L)单独使用均对螺旋粉虱具有一定的生物活性,同时将烟碱浓度降低至0.015mg/L后,添加一定量的桃金娘乙酸乙酯提取物混配后,对螺旋粉虱的田间虫口减退率显著增加,田间药剂处理后5d桃金娘乙酸乙酯提取物、烟碱及混配处理的虫口减退率分别为68.59%、77.38%和92.78%。  相似文献   

4.
以油橄榄脱脂果渣为原料,采用碱法提取油橄榄果渣水溶性膳食纤维(SDF)和水不溶性膳食纤维(IDF),并对其理化性质进行研究。在单因素试验基础上采用正交试验优化油橄榄果渣膳食纤维最佳提取工艺条件为:NaOH质量分数8%、提取温度80℃、提取时间80 min、液料比15∶1(m L∶g)。在最佳提取工艺条件下,油橄榄果渣SDF产率为28.74%,IDF产率为52.39%。理化性质研究结果表明:油橄榄果渣IDF的持水力、膨胀力和持油力分别为3.38 g/g、2.20 m L/g、1.91 g/g;油橄榄果渣SDF的持水力、膨胀力和持油力分别为5.05 g/g、4.78 m L/g、4.25 g/g。在透析90 min时,油橄榄果渣SDF、IDF和脱脂果渣的葡萄糖透析延迟指数分别为13.22%、8.55%、4.38%。扫描电镜观察表明,制备的IDF结构疏松,具有较大的空腔和裂缝,而SDF粒径较小,呈堆积状,具有较多的空腔。  相似文献   

5.
采用CuC l2溶液对椰壳活性炭进行改性,制备高容量甲醛吸附活性炭。以扫描电镜(SEM)观测改性前后活性炭的表面形貌;用低温液氮吸附(N2/77K)来表征铜盐浓度的改变对活性炭孔隙结构的影响;用X射线光电子能谱(XPS)分析活性炭表面元素组成及存在形式;用X射线衍射(XRD)研究载铜活性炭的晶形结构;以常温动态吸附评价活性炭对甲醛的吸附性能。研究结果表明:改性活性炭中铜以Cu、CuC l及CuC l23种形式存在,改性活性炭微孔数量减少,介孔比例提高;同时,随铜盐浓度增加,活性炭的比表面积和孔容减少,平均孔径变大;改性后活性炭表面含氧官能团数量增加。当CuC l2浓度为0.5 mol/L时,制备的改性活性炭对甲醛的吸附容量(4.28 mg/g)是原料活性炭(1.38 mg/g)的3.1倍,甲醛在改性活性炭上的吸附行为符合Freundlich吸附模型。  相似文献   

6.
在单因素试验基础上,采用响应面法优化超声波辅助提取皂角刺皂苷的最佳工艺,并考察了最佳提取工艺下提取物对α-葡萄糖苷酶和α-淀粉酶的抑制活性。实验结果表明:皂角刺总皂苷超声波辅助提取的最佳工艺为液料比16∶1(mL∶g)、乙醇体积分数60%、超声波时间80 min和提取温度50℃,在此条件下皂角刺总皂苷得率为13.28%±0.25%。最佳工艺下的提取物对α-葡萄糖苷酶的半数抑制质量浓度(IC50)值为(0.146±0.019) g/L,强于阳性对照阿卡波糖IC50值((0.48±0.18) g/L);当提取物质量浓度为2 g/L时,对α-淀粉酶抑制率可达35.13%±0.58%,表明皂角刺具有开发成为Ⅱ型糖尿病药物的潜力。  相似文献   

7.
采用水提醇沉法从杜香(Ledum palustre L.)叶中提取得到多糖,通过硫酸苯酚比色法测定杜香叶多糖含量;在单因素试验的基础上进行正交试验优化提取条件,采用试剂盒法和化学实验法测定其体外总抗氧化活性以及DPPH·、·OH和H2O2清除能力;采用肝癌细胞Hep G2为细胞模型,研究其对Hep G2细胞的体外抗增殖活性。结果表明:杜香叶多糖提取的最佳条件为:液料比30∶1(m L∶g),提取温度80℃,提取时间3 h。在此条件下,多糖提取得率为7.86%±0.16%,纯度为90.06%。在质量浓度1~5 g/L范围内,杜香叶多糖体外抗氧化活性和抗癌细胞增殖活性均呈现出量效关系趋势。5 g/L杜香叶多糖总抗氧化能力为(10.27±0.2)U/m L,达到相同质量浓度的Vc总抗氧化活性的95%以上;各浓度杜香叶多糖DPPH·、·OH清除能力均达到相同质量浓度的Vc 90%以上,杜香叶多糖对H2O2清除能力在5 g/L时达到相同质量浓度的Vc 60%以上;当质量浓度为5 g/L时,杜香叶多糖对Hep G2细胞增殖抑制率达57.41%±0.02%。  相似文献   

8.
以碱木质素(AL)为原料制备羟丙基化碱木质素(HL),研究HL对纤维素酶的非生产性吸附性能的影响机制,并进一步探讨其对纤维素的酶水解得率的影响。Zeta电位滴定、X射线光电子能谱以及疏水性的测试结果表明:AL经过羟丙基化改性后表面特性发生改变,表面负电荷增加(Zeta电位由+35.0 mV降至-44.8 mV);表面元素分布及化学键组成发生了较大的变化,C—O和■键强度增加,疏水性减弱(疏水度由106.60 L/g减小为4.30 L/g),使得木质纤维素底物对纤维素酶的非生产性吸附减弱,进而显著提高纤维素酶水解效率。以10 U/g纤维素酶水解0.4 g/L微晶纤维素72 h,添加4 g/L的HL时游离酶蛋白质量分数为11.65%,相比4 g/L的AL提高152%;添加4 g/L的HL时酶水解得率为54.38%,相比4 g/L的AL提高32.09%。  相似文献   

9.
木屑是一种常见的农林废弃物,来源广泛、价格低廉。木屑作为一种天然的生物质材料对水中的重金属离子有一定的吸附能力,但吸附效率较低。为提高木屑的吸附效率,实现农林废弃物的资源化利用,以铁杉木屑、2-氨基对苯二甲酸(2-ATP)、2-巯基丙酸(2-MPA)为原料,制备2-氨基对苯二甲酸改性铁杉木屑(AmS)和2-巯基丙酸改性铁杉木屑(MmS)两种酯化改性的新型吸附剂,并研究它们对溶液中Hg~(2+)的吸附性能。考察Hg~(2+)初始浓度、溶液p H、干扰离子以及吸附时间等对吸附性能的影响,结果表明:两种吸附剂在pH 4~8时具有较高的吸附性能,在pH 5时,AmS和MmS吸附剂的最佳吸附效率分别为93.3%和95.5%;当溶液中存在0.2 mol/L的干扰离子Ca~(2+)时,AmS和MmS吸附剂的吸附效率仍能维持在70.4%和73.4%;吸附剂的动态吸附行为均符合伪二级动力学模型,速率控制步骤为化学吸附过程,能够在60 min内快速到达吸附平衡;吸附剂的等温吸附曲线均符合Langmuir模型,为单分子层吸附。吸附试验表明,298 K时AmS和MmS吸附剂对Hg~(2+)的最大吸附容量分别为121.8和149.1 mg/g,远高于改性前的铁杉木屑(5.6 mg/g),具有良好的应用前景。  相似文献   

10.
几种纤维素酶制剂水解和吸附性能的研究   总被引:3,自引:0,他引:3  
比较了商品纤维素酶和自产纤维素酶在蛋白组分及蛋白组分含量上存在的差异。商品纤维素酶水解稀酸预处理和蒸汽爆破预处理的玉米秸秆,其水解得率均低于自产纤维素酶。以蒸汽爆破的玉米秸秆为碳源制备纤维素酶,添加外源8 IU/g(以纤维素计)的β-葡萄糖苷酶,水解蒸汽爆破的玉米秸秆48 h,纤维素水解得率为90.08%;水解液中纤维二糖的质量浓度从17.06 g/L降低到1.12 g/L,相应葡萄糖质量浓度从21.09 g/L提高到44.01 g/L,可发酵性糖从55.28%提高到97.52%。微晶纤维素对商品酶和自产酶的吸附在30 m in达到平衡,且符合Langmu ir等温吸附方程;由Langmu ir常数分析得知两类酶均来自里氏木霉,且对微晶纤维素的亲和力相差不大。  相似文献   

11.
胶原-单宁树脂对水体中Pb(Ⅱ)的吸附特性研究   总被引:1,自引:1,他引:0  
牛皮经胃蛋白酶水解后提取胶原,通过胶原-黑荆树单宁-醛反应制备了胶原-单宁树脂(C-TR)吸附材料,并系统研究了其对水体中Pb(Ⅱ)的吸附特性。结果表明,C-TR对Pb(Ⅱ)有较强的吸附能力。当温度为303 K、pH值为4.5、Pb(Ⅱ)溶液(100 mL)的初始浓度为1.0 mmol/L时,C-TR(100 mg)对Pb(Ⅱ)的吸附容量达到0.34 mmol/g。pH值对吸附容量的影响较大,最佳吸附pH值为4.5。C-TR对Pb(Ⅱ)的吸附平衡符合Freundlich方程,温度对吸附平衡影响不大。吸附动力学可用拟二级速率方程来描述。固定床吸附表明,当1.0 mmol/L的Pb(Ⅱ)溶液以30 mL/h的流速流过床层时,流出液的体积约为60 mL时达到穿透点。  相似文献   

12.
以羧甲基纤维素钠(CMC-Na)为原料,以氯化血红素(Hemin)为催化剂,利用仿生体系聚合苯胺,制备得到纤维素基聚苯胺(CMC@PANI)复合材料。考察了不同制备条件对CMC@PANI产品得率及甲基橙(MO)吸附去除率的影响,表征了吸附材料形貌等结构特征,并分析了复合材料对水中染料的吸附性能。结果表明:CMC@PANI的优化制备条件为25℃时,在200 m L pH值为4的柠檬酸-柠檬酸钠缓冲溶液中,CMC-Na质量浓度2.5 g/L,苯胺与CMC-Na质量比值为1.8,Hemin用量为0.10 g/L,H_2O_2用量0.072 mol/L,HCl用量0.9 mol/L。此条件下,每克苯胺原料可得到约0.7 g CMC@PANI复合材料。扫描电镜、比表面积、红外光谱分析结果表明,该制备方法实现了CMC-Na和PANI的相互负载,产品粒径为0.5~10μm,表面粗糙,BET比表面积为19.96 m~2/g。最优工艺条件下制备的CMC@PANI对20 mg/L的阴离子染料MO在30 min时达到吸附平衡,去除率可达98%以上,最大吸附容量达到294.12 mg/g;对20 mg/L的阳离子染料罗丹明(Rh B)在180 min时去除率可达89.8%,明显优于PANI的吸附效果(68.0%)。可见,采用Hemin催化的绿色仿生工艺制备的CMC@PANI复合材料是一种比较理想的新型吸附材料。  相似文献   

13.
固体超强酸SO2-4 /TiO2在α-蒎烯合成紫苏葶中的应用研究   总被引:1,自引:0,他引:1  
筛选出了用α -蒎烯三步法合成制紫苏葶的一种新型催化剂SO2-4/TiO2型固体超强酸,得到催化剂制备的最适工艺条件为:硫酸浓度0.5mol/L、催化剂焙烧温度300℃、焙烧时间3h.用上述条件制备的催化剂催化桃金娘烯醛异构化制紫苏醛,得到最适工艺条件为:反应温度400℃、反应压力28kPa、空气流速12h-1.桃金娘烯醛的最高转化率达87.45%,紫苏醛的收率达41.29%,三步反应总转化率为33.49%.用IR、程序升温脱附(TPD)和BET比表面积对催化剂进行了表征,并将催化剂特性与它们的催化性能相关联.实验结果表明:SO2-4/TiO2固体超强酸催化剂表面形成螯合配位;该催化剂的活性随其比表面积和总酸量的增加而增大.  相似文献   

14.
研究了川楝子总黄酮和多糖的最佳提取条件,并利用过硫酸铵/N,N,N,,N'-四甲基乙二胺(AP-TEMED)反应体系和Fenton反应体系测其提取成分的抗氧化活性.结果表明,川楝子总黄酮提取的最佳工艺条件为:70%(体积分数)乙醇,料液比1∶30(g∶mL),微波提取7.5min;其多糖提取的最佳工艺条件为:浸提3 h,料液比1∶15(g∶mL),提取4次.川楝总黄酮和多糖均具有较强的抗氧化活性.当总黄酮质量浓度为9.74g/L时,对超氧阴离子自由基(O2-·)的清除效率达到76.6%,其质量浓度为12.38g/L时,对羟基自由基(·OH)的清除效率可达到84.0%;当多糖质量浓度达到10g/L时,对O2-·的清除效率达到63.7%,对·OH的清除效率可达到74.0%.  相似文献   

15.
高浓度的Cr(Ⅵ)已成为生态环境的主要污染源,为探索廉价高效的Cr(Ⅵ)处理技术,使用磷酸对玉米芯进行热改性处理,研究pH、投加量、振荡时间和Cr(Ⅵ)初始浓度等因素对于吸附效果的影响,并对改性前后的吸附性能进行对比分析。结果表明:较低的pH有利于吸附的进行,pH=1条件下,改性玉米芯对Cr(Ⅵ)的吸附效果最佳,去除率达到89.6%;随着投加量增加,吸附效果逐渐提高。吸附过程在80min左右基本达到平衡,满足准二级吸附动力学模型;吸附等温线满足Freundlich与Langmuir方程,相关系数均达到0.999;吸附过程为吸热过程,随着温度的上升,吸附容量逐渐增大。相同实验条件下,对于10mg/L的Cr(Ⅵ)溶液,投加20g/L的玉米芯,改性处理将去除率提高22.8%,改性处理后玉米芯对Cr(Ⅵ)的吸附性能得到明显提升。  相似文献   

16.
为提高木质素产品的附加值,以钠基膨润土为原料,三甲基木质素季铵盐(T-QL)为改性剂,制备了三甲基木质素季铵盐/膨润土(L-Bt)缓释剂;并以恶霉灵作为模拟农药,考察了L-Bt缓释剂对恶霉灵的吸附性能及缓释性能。利用FT-IR表征了其结构,采用XRD分析了改性后膨润土的底面间距。结果表明:季铵离子已成功负载到膨润土上;改性后的膨润土引起层间域的膨胀,层间距增大。改性膨润土缓释剂最佳制备工艺条件为:T-QL用量为膨润土阳离子交换容量0.8倍的改性膨润土(L-0.8Bt),L-0.8Bt的投加量为0.06 g,吸附时间10 h,恶霉灵初始质量浓度为500 mg/L,p H值为4时,其最大吸附量为281 mg/g。通过水溶缓释实验研究了药水比例和温度对载药量为281 mg/g的L-0.8Bt缓释性能的影响,结果表明,随着药水比例的增加和温度的升高,其累计释药率均逐渐增加。  相似文献   

17.
【目的】桃金娘烯醛可由可再生的α-蒎烯选择性氧化而得到,且本身具有多种生物活性。另外,含噻唑或腙亚结构化合物具有广泛的生物活性,常用于构建生物活性分子的砌块。本研究将噻唑和腙2类活性基团引入到桃金娘烯醛骨架中,合成得到系列新型桃金娘烯醛基噻唑-腙类生物活性化合物,为我国的天然优势林产资源α-蒎烯的改性和高值化利用提供新的途径。【方法】α-蒎烯经选择性烯丙位氧化得到桃金娘烯醛,然后与氨基硫脲缩合制备桃金娘烯醛缩氨基硫脲,再与一系列取代的α-溴代苯乙酮反应,合成得到16个桃金娘烯醛基噻唑-腙类化合物。通过FT-IR、~1H-NMR、~(13)C-NMR和ESI-MS等技术手段确认目标化合物的结构,并用琼脂稀释法测定对所合成的目标产物的抑菌活性。【结果】合成得到16个新型桃金娘烯醛基噻唑-腙类目标化合物4a-4p。测试4a-4p抑菌活性,在50 mg·L~(-1)质量浓度下,目标化合物对水稻纹枯病菌、黄瓜枯萎病菌、花生褐斑病菌、玉米小斑病菌、苹果轮纹病菌、西瓜炭疽病菌、番茄早疫病菌和小麦赤霉病菌均具有一定的抑制活性。总体上,目标化合物对苹果轮纹病菌的抑制效果最好,有12个化合物的抑菌率大于60%,尤其是化合物4n(R=4-NO2),其抑菌率高达90.6%(活性级别为A级)。【结论】合成得到系列新型桃金娘烯醛基噻唑-腙类化合物。这些化合物均具有一定的抑菌活性,其中化合物4n(R=4-NO_2)是值得进一步研究的先导化合物。  相似文献   

18.
以汉麻秆芯(HP)为原料,通过高锰酸钾对其进行氧化改性制备高锰酸改性汉麻秆芯(K-HP),并研究改性前后汉麻秆芯对亚甲基蓝染料的吸附性能,探讨了溶液初始质量浓度、吸附时间、吸附温度和溶液pH值对其吸附性能的影响。结果表明:经高锰酸钾改性后,汉麻秆芯中引入了新的Mn—O键,部分羟基被氧化成羧基,但汉麻秆芯的颗粒尺寸结构没有变化;汉麻秆芯的吸附量随亚甲基蓝溶液初始质量浓度的增加而升高,但染料去除率随之降低;当吸附温度为25℃,pH值为5,在10 m L亚甲基蓝溶液中添加0.010 0 g吸附剂时,HP的最大吸附量达71 mg/g,吸附平衡时间为30 min,K-HP最大吸附量增加到199 mg/g,吸附平衡时间为60 min; HP和K-HP对亚甲基蓝的吸附性能在25~45℃范围内不受影响,最优pH值为5;等温吸附模型拟合结果表明:HP和K-HP的吸附过程符合Langmuir模型,说明吸附过程为理想的单分子层吸附;动力学吸附模型拟合结果表明:HP和K-HP的吸附过程符合准二级动力学模型,说明吸附速率主要受化学吸附机理控制。  相似文献   

19.
时代 《绿色科技》2012,(5):164-166,168
通过大量的实验研究了应用低成本吸附剂废酵母菌在微波改性后去除废水中重金属铜(Ⅱ)离子,并通过改变反应过程中的pH值、反应时间、初始浓度、废酵母菌投加量、反应温度等因素来影响吸附效果。研究结果表明:在pH值为7.0、反应时间为90min、温度为55℃、Cu2+初始浓度为40mg/L、微波改性废酵母菌投加量为4g/L时,微波改性酵母菌的最大吸附容量为41.84mg/g。吸附过程符合Langmuir吸附等温模式。吸附过程的热力学常数△G0、△H0和△S0分别为-6.12kJ/mol、9.2kJ/mol和48.19kJ/mol。说明废酵母菌对Cu2+的吸附是自发的吸热反应。微波改性废酵母菌对Cu2+的吸附动力学模型能够较好地符合准二级动力学方程。  相似文献   

20.
基于牡蛎壳富含碳酸钙成分,采用800℃高温改性方法制备牡蛎壳改性花生壳生物炭,考察了其对溶液中磷的吸附性能。实验结果表明:牡蛎壳改性后的花生壳生物炭对磷的吸附量显著高于未改性的花生壳生物炭。溶液初始磷浓度为200mg/L,添加0.02g的生物炭,在25℃下反应48h后,牡蛎壳改性花生壳生物炭磷吸附容量为197.3mg/g,约为未改性花生壳生物炭的17倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号