首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[目的/意义]植物光合作用过程中释放的叶绿素荧光与光化学反应紧密耦合,其荧光信号采集是光合作用效率、植物生理及环境胁迫等无损的测试手段。作为获取该信号的叶绿素荧光成像系统通常价格昂贵,针对此问题,本文提出一种低成本叶绿素荧光成像系统设计方案。[方法]叶绿素荧光成像系统主要由激发光灯组、CMOS(Complementary Metal Oxide Semiconductor)相机及其控制电路和智能手机上位机三部分组成。激光发灯组采用LED面光源和碗状结构,通过对光场的仿真分析保证光照强度和均匀性;采用微型CMOS相机进行荧光图像采集,利用智能手机作为上位机完成激发光控制,并将数据回传至手机或服务器进行分析、处理、存储及显示。[结果和讨论]基于该方案,制造了一款仪器样机,其激发光强最大为6250μmol/(m2·s),光场整体变化幅度偏差为2%,光谱范围为400~1000 nm,稳定的采集频率最高可达42 f/s,具备连续光激发和调制脉冲激发功能。[结论]通过叶绿素荧光图像采集实验验证了本仪器的有效性。该仪器结构简单、造价成本低,在植物生理状态检测领域有着很好的应用价...  相似文献   

2.
近年来,随着无人机和各类传感器在作物育种和田间生产中被广泛使用,作物表型组学得到了极大的发展。兼具了高精度、高通量和高度自动化的作物表型组学及其相关技术的发展,加快了新品种的选育和优化了田间管理。作物三维重构技术是作物表型组学最基本的技术方法之一,是精准描述作物形态全息结构的重要工具,而作物的三维重构模型对于高通量作物表型获取、作物株型特征评价、植株结构和表型相关性分析等均具有重要意义。为深入总结作物表型中三维重构技术研究进展,本文从作物三维重构的基本方法与应用特点、研究现状和前景展望等三个方面展开综述。本文首先归纳整理了现有作物三维重构方法,并对各类方法的基本原理进行了综述,分析了各类方法的特点和优缺点,同时在归纳作物三维重构方法一般性流程的基础上,对各类方法的适用性进行剖析,归纳整理出了各类方法在实施时的具体流程和注意事项;其次,本文依据研究目标对象不同将作物三维重构的应用分为单株作物重构、田间群体重构和根系重构三部分,并从这三个视角对作物三维重构技术的应用情况进行了综述,依据精度、速度和成本三方面,探究了各个方法对于不同作物三维重构的研究现状,分析整理出不同重构对象背景下作物三维重构存在的问题与挑战;最后,从作物三维重构全程自动化、4D表型的构成、作物虚拟生长与模拟育种和智慧农业发展等方面对作物三维重构技术的前景进行了展望。  相似文献   

3.
荧光成像技术在植物病害检测的应用研究进展   总被引:1,自引:0,他引:1  
植物病害阻碍植物正常生长,对蔬菜产品品质安全造成威胁,病害检测可以有效控制植物病害发展,是提高果蔬品质安全和可持续生产能力的一个重要途径。所有的绿色植物在受到紫外光或可见光激发时,都会发出可见光波段的荧光。基于植物荧光的成像技术,是利用计算机模拟人眼的视觉功能,在不破坏植株外观且不影响其生长的情况下,获取植物的荧光图像,并通过图像处理算法,对植物的健康状况做出判断。本文对荧光成像技术及其在植物病害检测中的研究进行了综述,介绍了荧光成像的原理,分别从叶绿素荧光和其他色素荧光两方面总结了国内外研究现状。与可见光成像、高光谱成像、多光谱成像以及热成像技术相比,该技术具有可获取植物内部信息、受温湿度影响小、不局限于晴天采集、价格合理等优点。  相似文献   

4.
针对小麦植株分蘖多、器官间交叉遮挡严重,难以用图像或点云准确提取植株和器官表型的问题,本研究提出了基于三维数字化的小麦植株表型参数提取方法。首先提出了小麦植株各器官数字化表达方法,制定了适用于小麦全生育期的三维数字化数据获取规范,并依据该规范进行数据获取。根据三维数字化数据的空间位置语义信息和表型参数的定义,提出了小麦植株表型参数计算方法,实现了小麦植株和器官长度、粗度和角度等3类共11个常规可测表型参数的计算。进一步提出了定量描述小麦株型和叶形的表型指标。其中,植株围度通过基于最小二乘法拟合三维离散坐标计算,用于定量化描述小麦植株松散/紧凑程度;小麦叶片卷曲和扭曲程度为定量化叶形的指标,根据叶面向量方向变化计算得到。利用丰抗13号、西农979号和济麦44号三个品种小麦起身期、拔节期、抽穗期三个时期的人工测量值和提取值进行验证。结果表明,在保持植株原始三维形态结构的前提下,提取的茎长、叶长、茎粗、茎叶夹角与实测数据精度相对较高,R2 分别为0.93、0.98、0.93、0.85;叶宽和叶倾角与实测数据的R2 分别为0.75、0.73。本方法能便捷、精确地提取小麦植株和器官形态结构表型参数,为小麦表型相关研究提供了有效技术支撑。  相似文献   

5.
[目的/意义]作物农艺性状与形态结构表型智能识别是作物智慧育种的主要内容,是研究“基因型—环境型—表型”相互作用关系的基础,对现代作物育种具有重要意义。[进展]大规模、高通量作物表型获取设备是作物表型获取、分析、测量、识别等的基础和重要手段。本文介绍了高通量作物表型主流平台和感知成像设备的功能、性能以及应用场景。分析了作物株高获取、作物器官检测与技术等农艺性状智能识别和作物株型识别、作物形态信息测量以及作物三维重建等形态结构智能识别技术的研究进展及挑战。[结论/展望]从研制新型低成本田间智能作物表型获取与分析装备、提升作物表型获取田间环境的标准化与一致性水平、强化田间作物表型智能识别模型的通用性,研究多视角、多模态、多点连续分析与时空特征融合的作物表型识别方法,以及提高模型解释性等方面,展望了作物表型技术主要发展方向。  相似文献   

6.
[目的/意义]为探究并表达环境因素对黄花各器官生长发育、形态结构和产量的影响,提出一种基于源库关系的黄花植株三维动态生长及产量模拟模型。[方法]以大同地区黄花主要栽培种植品种大同黄花为研究材料,采集黄花叶片、花葶、花蕾等形态数据和叶片光合生理参数,利用功能-结构植物模型(Functional-Structural Plant Model,FSPM)平台的三维建模技术,建立基于云量的室外地表太阳辐射模型及适配黄花的光合作用模型,同时基于黄花源库关系建立黄花光合产物碳分配模型,利用β生长函数构建黄花各器官生长模拟模型,计算黄花生长期内逐日形态数据,最终实现黄花植株三维动态生长及产量模拟。[结果和讨论]采用实测数据对模型进行检验。结果显示,室外地表太阳辐射实测值和模拟值R2为0.87;剩余标准差(Root Mean Squared Error,RMSE)为28.52 W/m2,黄花各器官模拟模型实测值和预测值R2为0.896~0.984,RMSE为1.4~17.7 cm;平均花蕾产量模拟R2为0.880,...  相似文献   

7.
[目的/意义]为解决高通量草莓叶龄及冠幅提取问题,提出一种基于移动式表型平台和实例分割技术的高通量表型提取方法。[方法]利用小型移动式表型平台对温室内盆栽草莓植株的俯拍图像进行数据获取,并利用改进型Mask R-CNN (Convolutional Neural Network)模型对图像进行处理,以此获取草莓植株叶龄信息。首先利用带有分组注意力模块的Split-Attention Networks (ResNeSt)骨干网络替换原有网络,从而提高图像特征信息提取精度和执行效率。在训练时,利用Mosaic方法对草莓图像进行数据增强,并且使用二元交叉熵损失函数对原本的交叉熵分类损失函数进行优化,以达到更好的植株与叶片的检测准确度。在此基础上,对训练结果进行后处理,利用标定比值对冠幅进行计算。[结果和讨论]该方法能够在ResNeSt-101骨干网络下,实现80.1%的掩膜准确率和89.6%的检测框准确率,并且能够以99.3%的植株检测正确率和98.0%的叶片数量检出率实现高通量的草莓叶龄估算工作。而模型推理后草莓植株南北和东西向冠幅测试值与真实值相比误差均低于5%的约占98.1%。[结论]...  相似文献   

8.
基于图像处理和聚类算法的待考种大豆主茎节数统计   总被引:1,自引:0,他引:1  
为了实现待考种大豆植株主茎节数的快速、高效测量,提出一种基于图像处理和聚类算法的待考种大豆主茎节数统计方法。首先,获取不同视角下的已脱叶待考种大豆植株图像,随机抽取训练集与验证集样本植株,并设定初始图像采集间隔与抽样步长;其次,通过植株分割、骨架提取、主茎节点去噪等操作,获取分布于植株主茎上的待检测大豆茎节点;通过基于空间距离的数据转换方法将分布离散的大豆茎节点转换至便于聚类的数据集内;利用HDBSCAN聚类算法对不同采集视角下的待检测大豆茎节点进行聚类,统计、记录主茎节数识别准确率,筛选最优采集间隔;最后,利用最优采集间隔对剩余样本植株主茎节数进行统计、分析。在63株 “中黄30”待考种大豆植株中抽取21株植株作为训练集,并进行实验测试,发现在采集间隔为90°时,以最小聚类簇为2,融合处理4幅大豆图像,大豆主茎节数识别效果最优。据此对42株验证集样本植株进行主茎节数识别和分析,结果表明,大豆主茎节数识别准确率可达98.25%。该方法能够快速、准确获取大豆主茎节数,可满足大豆考种需求。  相似文献   

9.
为开展马铃薯叶片PSⅡ叶绿素荧光参数无损检测研究,利用高光谱成像系统采集200个感兴趣区域样本点的光谱图像并提取反射率,使用封闭式叶绿素荧光成像系统采集相应样本点的qP值。采用SPXY算法将总样本按照2∶1的比例划分为建模集(135个样本)和验证集(65个样本),采用联合区间偏最小二乘法(Synergy interval partial least squares,si-PLS)和随机蛙跳(Random frog,RF)算法各筛选出18个敏感波长,并用选择的特征波长建立偏最小二乘回归(Partial least squares regression,PLSR)模型。结果表明:si-PLS-PLSR模型的建模集决定系数R2c为0.6285,验证集决定系数R2v为0.6103;RF-PLSR模型的建模集决定系数R2c为0.7093,验证集决定系数R2v为0.6872。结果表明利用RF算法筛选的特征波长对马铃薯叶片qP值检测的解释性优于si-PLS算法,特征波长在518.72~640.64nm、650~800nm和850~1000nm范围,体现了荧光发射信号是马铃薯作物光化学吸收qP值的重要响应特征,且叶片光化学吸收与叶绿素含量、叶片结构、水分含量等属性紧密关联。绘制叶片qP值分布图为分析马铃薯叶片光化学吸收和光合作用动态提供了直观的分析手段,可为马铃薯作物光合活性评价及复杂生理生化动态监测提供支持。  相似文献   

10.
苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出一种基于神经辐射场(Neural radiance fields,NeRF)的苗期作物三维建模和表型参数获取系统,利用手机获取不同视角下的RGB影像,通过NeRF算法完成三维模型的构建。在此基础上,利用点云库(Point cloud library,PCL)中的直线拟合和区域生长等算法自动分割植株,并采用距离最值遍历、圆拟合和三角面片化等算法实现了精准测量植株的株高、茎粗和叶面积等表型参数。为评估该方法的重建效率和表型参数测量精度,本研究分别选取辣椒、番茄、草莓和绿萝的苗期植株作为试验对象,对比NeRF算法与SFM-MVS算法的重建结果。结果表明,以SFM-MVS方法重建点云为基准,NeRF方法重建的各植株点云点对距离均方根误差仅为0.128~0.395cm,两者重建质量较接近,但在重建速度方面,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,该方法提取辣椒苗株高、茎粗决定系数(R2)分别为0.971和0.907,均方根误差(RMSE)分别为0.86cm和0.017cm,对各苗期植株叶面积提取的R2为0.909~0.935,RMSE为0.75 ~3.22cm2,具有较高的测量精度。本研究提出的方法可以显著提高三维重建和表型参数获取效率,从而为作物育种选苗提供更为高效的技术手段。  相似文献   

11.
作物具有结构多样、生长环境复杂等特征。RGB图像数据能真实地反映植株的纹理特征与颜色特征,三维点云数据包含了作物的体量信息。将RGB图像和三维点云数据结合,实现作物的二维和三维表型参数提取,对表型组学的方法研究具有重要意义。本研究以马铃薯为研究对象,使用RGB相机和激光扫描仪分别采集了50个马铃薯的RGB图像与三维激光点云数据。对比了OCRNet,UpNet,PaNet和DeepLab v3+四种深度学习语义分割方法的分割精度,并选择精度较高的OCRNet网络实现马铃薯顶视图像的语义分割。优化了Mean shift聚类算法流程,完成了马铃薯植株激光点云的单株分割,并结合欧式聚类和K-Means聚类算法对单株马铃薯植株点云的茎和叶进行准确地分割。同时,提出一种利用编号建立马铃薯单株RGB图像和激光点云间一一对应关系的策略,并以此为基础分别从RGB图像与激光点云中提取同一马铃薯植株包括最大宽度、周长、面积、株高、体积、叶长与叶宽在内的8个二维表型参数与10个三维表型参数。最后,选择了比较具有代表性、易测量的叶片数、株高、最大宽度三个表型参数进行精度评估,平均绝对百分比误差(Mean Abs...  相似文献   

12.
为了满足田间作物长势快速检测与指导变量管理的需求,以玉米为例设计了基于多光谱成像的田间作物植株叶绿素检测系统,包括可见光(RGB)和近红外(Near-infrared, NIR)图像采集模块、主控处理器模块、模型加速模块、显示及电源模块,用于实现玉米植株智能识别与叶绿素指标一体化检测。首先,采集玉米苗期和拔节期冠层图像数据集,比较了植株冠层实例分割与株心目标检测两种深度学习模型,构建了基于MobileDet+SSDLite(Single shot multibox detector lite)轻量化网络的玉米植株定位检测模型,实现玉米植株识别。其次,提取被识别的植株株心RGB-NIR图像,开展RGB和NIR图像匹配与分割,提取R、G、B和NIR灰度值计算植被指数,使用SPXY算法(Sample set portioning based on joint X-Y distances)和连续投影算法(Successive projections algorithm, SPA)分别对数据集进行样本划分及特征变量筛选,选择高斯过程回归(Gaussian process regression, ...  相似文献   

13.
以犁胫为试验对象,采用结构光和双目立体视觉,在实验室条件下,搭建了热态犁体锻件样板曲线三维重构和测量系统,提出了非高斯分布激光条纹边缘的形态学检测方法和亚像素中心的提取算法;在对原始图像立体校正基础上,研究了对激光条纹进行二次校正和高精度匹配的方案和算法,提高了左右图像立体匹配和三维重构的精度和速度,并在Halcon平台上,实现了犁体结构光样板曲线的光刀中心提取、重构、拟合和数学描述,解决了犁体样板曲线尤其是热态锻件犁体样板曲线测量难的问题.在Intel(R)Core(TM)i7-5500U CPU@2.40 GHz处理器上运行,测量精度1.88 mm,耗时316 ms.试验证明,以结构光和双目立体视觉为手段对犁体样板曲线进行测量,避免了热态锻件辐射光的影响及其他干扰影响,具有一定精度和可行性,可以提高犁体设计、制造、检验的效率和方便性,为犁体轮廓的检验、测绘、描述、制造和设计提供了新的途径.  相似文献   

14.
基于光学相机的植物表型测量系统与时序生长模型研究   总被引:1,自引:0,他引:1  
为提高形态表型检测速率,满足形态表型测量的标准化需求,以拟南芥为例,提出一种测量植物三维形态特征的方法,并建立植物时序生长方程和可视化模型,构建了一套经济实用、面向拟南芥生长过程的形态表型测量机器视觉系统。通过光学相机采集拟南芥植株的二维图像序列,利用运动中恢复结构算法生成三维点云;设计一种彩色标板,基于彩色标板的坐标系标准化方法,提取拟南芥植株的点云并标准化坐标系。与传统人工接触式测量值相比,该系统交互测量的拟南芥叶片宽度、长度、主茎长度、叶片面积、叶片间夹角的平均相对误差分别为9. 83%、10. 10%、1. 07%、4. 09%和4. 37%。利用该系统采集哥伦比亚野生型拟南芥生命周期内的形态表型信息,拟合其数学生长模型,并使用L-studio软件,将时序生长模型可视化表达。结果表明,植物固定、传感器移动的平台结构解决了传统传感器固定、植物移动方式导致的植物抖动从而影响三维重建效果的问题,可快速、准确、可靠地提取植物表型信息。基于彩色标板的点云坐标系标准化方法在每个单位时间都能够对拟南芥植物对象进行参数提取,与传统的人工接触式测量方法相比,效率高、速度快,可满足拟南芥的形态表型分析需要。  相似文献   

15.
缺钾对作物光合作用的影响及其机理   总被引:1,自引:0,他引:1  
介绍缺钾对作物光合作用影响的主要方面,分别为影响植株的光合面积、影响光合作用中CO2的同化作用,影响叶绿体的结构及叶绿素的荧光特性、影响光合酶的活性.通过探讨影响作用及相关机理,为作物缺钾防治提供理论参考.  相似文献   

16.
限量灌溉对冬小麦光合与叶绿素荧光的影响   总被引:2,自引:0,他引:2  
对限量灌溉条件下冬小麦光合与叶绿素荧光变化规律进行了分析,并探讨了冬小麦光合的气孔与非气孔限制情况.结果表明:轻度限量灌溉对冬小麦光合与叶绿素荧光没有显著影响;在开花期、灌浆初期,中度、重度限量灌溉造成的气孔限制是降低光合速率的主要原因;灌浆末期,中度、重度限量灌溉导致PSⅡ最大光化学效率显著降低,非气孔限制成为降低光...  相似文献   

17.
基于RGB-D相机的果树三维重构与果实识别定位   总被引:4,自引:0,他引:4  
为实现对果园果实机器人采摘提供科学可靠的技术指导,提出了一种基于RGB-D相机的苹果果树三维重构以及进行果实立体识别与定位的方法。使用RGB-D相机快速获取自然光照条件下果树的彩色图像和深度图像,通过融合果树图像彩色信息和深度信息实现了果树的三维重构;对果树的三维点云进行 R-G 的色差阈值分割和滤波去噪处理,获得果实区域的点云信息;基于随机采样一致性的点云分割方法对果实点云进行三维球体形状提取,得到每个果实质心的三维空间位置信息和果实半径。实验结果表明,提出的果树三维重构和果实立体识别与定位方法具有较强的实时性和鲁棒性,在0.8~2.0 m测量范围内,顺光和逆光环境中果实正确识别率分别达95.5%和88.5%;在果实拍摄面的点云区域被遮挡面积超过50%的情况下正确识别率达87.4%;果实平均深度定位偏差为8.1 mm;果实平均半径偏差为4.5 mm。  相似文献   

18.
小麦叶锈病对我国小麦生产危害巨大,实现小麦叶锈病的监测和快速分级是进行科学生产管理的基础。针对常规图像检测技术的不足,提出一种基于红外热成像技术的快速检测和分级方法。首先,采集整株小麦样本的红外热成像图像,分别计算健康植株、潜伏期植株和显症植株的平均叶温,探明真菌入侵过程中的温度变化规律;然后,将经过直方图均衡化和中值滤波预处理的红外热成像中低于显症植株温度阈值的区域提取出来;通过温度区域划分、低温区域提取和阈值分割,计算病斑面积在整体植株热成像总面积中的百分比;最后,对病情指数进行相关分析,获得相关系数为0. 975 5,预测均方根误差为9. 79%,总识别正确率为90%。结果表明,基于红外热成像边缘检测算法的小麦叶锈病分级方法是可行的。  相似文献   

19.
基于角度约束空间殖民算法的树点云几何结构重建方法   总被引:2,自引:0,他引:2  
激光点云数据包含信息丰富、精度高,在森林演变、植物模型重构方面应用广泛。为提高树三维重构时的精度与真实感,提出一种基于实测点云数据的三维重构方法。首先,使用Kinect 2.0采集树的双面点云数据,在树根附近放置塑料标准球作为标记,使用人工标记法粗配与ICP算法精配相结合的方式对获取的双面点云数据进行配准,得到树完整的点云数据;其次,引入生长角度约束改进空间殖民算法生成树的三维骨架,根据管道模型估算树枝粗度,使用广义圆柱体生成树干;最后,对叶片单独建模,根据叶序规则添加树叶完成树的三维重构。以玉兰树、枫树以及Limit Tree为例进行重构试验,试验结果表明,该方法能够逼真地模拟树的三维形态结构,较好地展现树的拓扑结构关系,重构误差在6.5%以内,可为虚拟树木三维建模、虚拟修剪以及树的拓扑结构分析等研究提供参考。  相似文献   

20.
基于机器视觉的大田植株生长动态三维定量化研究   总被引:3,自引:0,他引:3  
高通量植物三维表型的研究对判定植株表型特征至关重要。基于机器视觉的植株三维表型获取方法在温室中已广泛应用,能够动态监测植株生长过程,但在大田复杂环境中应用较少。以大田生长的玉米、大豆植株为研究对象,基于机器视觉分析方法对不同生长时期玉米、大豆植株进行个体和群体的三维重建,并基于手动测量值对叶长、叶最大宽进行精度评估。研究结果表明,叶长、叶最大宽的计算值与手动测量值的R2均大于0.97,精度较高,表明大田环境下此方法可以满足作物表型三维构建参数提取的精度要求,但是当冠层遮挡较严重时,三维重建精度将明显下降。进一步自动提取了株高、冠幅和器官生长动态,结果可为与基因型相关的表型高通量分析提供方法,并可进行株型与冠层辐射的精确评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号