首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以正己烷为溶剂,在加热回流条件下,ω-氯甲基长叶烯(Ia)与硫氰酸铅进行取代反应,选择性合成具有低刺激性气味的ω-异硫氰甲基长叶烯(Ib)。采用高分辨率质谱、傅里叶红外吸收光谱、紫外吸收光谱、1H与13C核磁共振谱对目标化合物的化学结构进行表征确证。高分辨质谱确定了其分子式为C17H25NS,傅里叶红外吸收光谱、紫外-可光吸收光谱、1H NMR与13C NMR分别证实了■结构和长叶烯结构的存在。化合物Ib兼具长叶烯和异硫氰酸甲酯的分子结构,可归属于异硫氰酸烯丙酯类化合物。通过96孔板二倍稀释法抑藻活性试验的评价,得到化合物Ib能够抑制斜生栅藻和中肋骨条藻的生长,其最小抑制质量浓度分别为62.5和31.25 mg/L左右,抑藻活性明显优于化合物Ia、长叶烯和异硫氰酸甲酯。  相似文献   

2.
长叶烯ω-乙酰氧甲基化的新方法   总被引:1,自引:0,他引:1  
本文将醋酸锰(Ⅲ)、硝酸铈铵在冰乙酸介质中氧化烯烃合成γ-内酯的反应推广到具有环外双键的多环桥环化合物长叶烯的研究,反应结果没有得到γ-内酯。用醋酸锰(Ⅲ)氧化得到唯一的E-ω-乙酰氧甲基长叶烯(2),产率为32%,用硝酸铈铵氧化除得到(2)(产率为55.1%)外,还得到E-ω-羧基长叶烯(4),产率为27.6%,本文对该反应的机理作了初步讨论。  相似文献   

3.
莰烯和长叶烯的间接ω-酰化   总被引:1,自引:0,他引:1  
(E)-ω-氯汞化莰烯与乙酰氯在三氯化铝的催化下生成(E)-ω-乙酰基莰烯。同法合成了(E)-ω-苯甲酰基莰烯和(E)-ω-乙酰基长叶烯。ω,ω-二(氯汞)莰烯与乙酰氯反应得到(E)和(Z)-ω-乙酰基莰烯的混合物,用柱层析进行分离并用核磁共振谱确定了两个异构体的构型。  相似文献   

4.
以异长烯酮为原料,通过缩合、亲核取代和环化等手段合成了11种新型异长叶烯基噻唑类化合物,同时采用1H NMR、13C NMR、LC-MS和FT-IR对化合物进行了鉴定,从而确定了化合物的结构。对目标化合物进行了抑菌活性实验,结果表明:(E)-4-(4-甲氧基苯基)-2-(2-(1,1,5,5-四甲基-3,4,5,6-四氢-1H-2,4a-亚甲基-7(2H)-亚基)肼基)噻唑(2e)与(E)-4-(4-甲基苯基)-2-(2-(1,1,5,5-四甲基-3,4,5,6-四氢-1H-2,4a-亚甲基-7(2H)-亚基)肼基)噻唑(2g)对细菌(大肠杆菌与金黄色葡萄球菌)具有较好的抑制效果,最低抑菌质量浓度(MIC)为7.8 mg/L。(E)-4-氯苯基-2-(2-(1,1,5,5-四甲基-3,4,5,6-四氢-1H-2,4a-亚甲基-7(2H)-亚基)肼基)噻唑(2b)对真菌(白念球菌与热带假丝酵母)抑制效果优于其他化合物,其MIC值为15.6 mg/L。采用噻唑蓝(MTT)法对目标化合物进行了人体肝癌细胞(HepG 2)抗癌活性测试,化合物2g(IC50=43.9±0.9 mg/L)对HepG 2具有较好的抗癌活性。  相似文献   

5.
研究了SO2-4/TiO2-ZrO2型固体超强酸催化剂的制备及其催化长叶烯的异构反应,通过GC、GC-MS和标样分析,确定其主产物为异长叶烯.结果表明,该催化剂对长叶烯的异构化反应有很高的催化活性和较好的选择性.考察了其催化性能的影响因素.结果表明,适宜的催化剂制备条件是:n(钛)∶n(锆)为3∶1,焙烧温度550 ℃.长叶烯异构优化的工艺条件:反应时间4 h、反应温度165 ℃、催化剂用量4 %.该条件下长叶烯转化率99.1 %,异长叶烯得率97.2 %.同时考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况.  相似文献   

6.
由莰烯醛(1)与羟胺盐酸盐反应合成了莰烯醛肟(2),继而与卤代烃反应合成了5种莰烯醛肟烃基醚衍生物,分别为:莰烯醛肟乙基醚(3a)、莰烯醛肟正丙基醚(3b)、莰烯醛肟正丁基醚(3c)、莰烯醛肟正戊基醚(3d)和莰烯醛肟苄基醚(3e)。通过红外光谱、质谱和核磁共振等仪器分析手段对产物结构进行了确认。在此基础上,采用菌丝生长速率法,评价了莰烯醛肟及其烃基醚衍生物对12种植物病原真菌的生长抑制作用,结果表明:产物对12种植物病原真菌皆有一定抑制作用,其中莰烯醛肟的抑菌活性最优,并且对油茶炭疽病的抑制效果最好,EC 50为39.25 mg/L,对水稻纹枯病菌、猕猴桃果实拟茎点霉、玉米赤霉病菌和毛竹枯梢病病原菌的EC 50为40~50 mg/L;在质量浓度为500 mg/L时,莰烯醛肟对水稻纹枯病菌等9种植物病原真菌完全抑制,对松枯梢病菌和七叶树壳孢菌的抑制率达97%以上,当药液浓度降低时,莰烯醛肟对大部分病原菌的抑制率仍然超过百菌清500 mg/L时的抑制率。虽然莰烯醛肟烃基醚衍生物的抑菌活性较莰烯醛肟有所降低,但对毛竹枯梢病菌、梨链格孢菌和玉米赤霉病菌的抑制率皆高于(或等于)百菌清。  相似文献   

7.
以α-蒎烯为原料,先经环氧化和催化异构得到α-龙脑烯醛,再与氨基硫脲反应得到α-龙脑烯醛基缩氨基硫脲,然后环合生成α-龙脑烯醛基噻二唑,最后将其与一系列酰氯发生N-酰化反应,合成得到12个未见文献报道的2-取代酰氨基-5-(α-龙脑烯醛基)-1,3,4-噻二唑化合物(6a~6l)。通过FT-IR、~1H NMR、~(13) C NMR和ESI-MS对12个目标产物进行结构表征,并对目标产物的抑菌活性进行了测试。抑菌活性测试表明:在50 mg/L质量浓度下,目标化合物对5种供试病菌均有不同程度的抑制活性,部分目标化合物的抑菌活性与商品抑菌剂嘧菌酯相近,甚至超过嘧菌酯,其中目标化合物6j对小麦赤霉病菌(Fusarium graminearum)的抑菌率达94.4%,6h对苹果轮纹病菌(Physalospora piricola)的抑菌率达97.7%。  相似文献   

8.
以α-蒎烯(1)为原料,经Wagner-Meerwein重排得α-萜品烯(2),2与马来酸酐发生Diels-Alder环加成反应得到α-萜品烯马来酸酐(3),3再与N-芳磺酰基乙二胺(4)反应,合成得到12个新型N-氨乙基萜品烯马来酰亚胺基磺酰胺类化合物(5a~5l)。采用FT-IR、1H NMR、13C NMR、ESI-MS和元素分析等多种手段对目标产物作了分析表征。初步的生物活性测试表明,目标化合物具有一定的抑菌活性,其中化合物5c(R=3-CH3)在质量浓度为50 mg/L时对花生褐斑病菌、番茄早疫病菌、苹果轮纹病菌和小麦赤霉病菌的抑制率分别达68.8%、68.3%、62.3%和53.8%。  相似文献   

9.
-石竹烯及其衍生物的生物活性与合成研究进展   总被引:3,自引:0,他引:3  
综述了β-石竹烯及其衍生物的活性及合成方法。在活性方面,β-石竹烯作为香料已经被应用于化妆品和食品添加剂中,药理研究表明β-石竹烯具有局麻作用、抗炎作用、驱蚊虫作用、抗焦虑、抗抑郁作用,β-石竹烯醇还应用于镇咳祛痰药物中,石竹烯氧化物具有镇痛和抗炎作用,抗真菌作用,还有细胞毒性等。同时还简单介绍了β-石竹烯及其部分衍生物的合成方法。  相似文献   

10.
以樟脑酸为原料,先经过脱水反应制备樟脑酸酐,再与水合肼酰化制备N-氨基樟脑酰亚胺,然后分别与多氟取代苯甲醛、噻吩甲醛和呋喃甲醛缩合得到12个新型的樟脑酸基酰腙化合物4a~4l。利用傅里叶变换-红外光谱(FT-IR)、核磁共振(~1H NMR和~(13)C NMR)以及电喷雾-质谱(ESI-MS)等对化合物进行结构表征。抑菌活性测试表明:质量浓度50 mg/L时,5-二氟苯基樟脑酸基酰腙(4i)、2-三氟甲基苯基樟脑酸基酰腙(4a)和2,3-二氟苯基樟脑酸基酰腙(4d)对苹果轮纹病菌的抑制率分别为90.6%、85.4%和82.2%。除草活性测试表明:质量浓度100 mg/L时,3-三氟甲基苯基樟脑酸基酰腙(4b)、3,4-二氟苯基樟脑酸基酰腙(4h)和3-噻吩基樟脑酸基酰腙(4k)对油菜胚根的生长抑制率分别为94.7%、95.6%和80.6%。其中化合物4i综合效果最好,50 mg/L时对苹果轮纹病菌的抑制率90.6%(活性级别为A级), 100 mg/L时对油菜胚根的生长抑制率75.6%(活性级别为B级)。  相似文献   

11.
将α-蒎烯选择性氧化制备马鞭草烯酮,对羰基进行肟化和分离,再发生亲核取代反应,合成得到40个新型(Z)-/(E)-马鞭草烯酮肟醚(4a~4t,包括20对Z/E异构体),采用~1H NMR、~(13)C NMR、FT-IR、UV-vis和ESI-MS对目标化合物进行了结构表征,并测试其抑菌活性。研究结果表明:在质量浓度50 mg/L下,目标化合物对8种植物病原菌均显示出不同程度的抑菌活性,其中化合物(E)-4r(R=2,6-Cl)对苹果轮纹病菌的抑制率为77.8%,化合物(E)-4s(R=2,6-F)对水稻纹枯病菌的抑制率为72.7%,化合物(E)-4n(R=p-CN)对玉米小斑病菌的抑制率为70.8%,(Z)-/(E)-异构体对一些植物病原菌的抑制活性显示一定差异。建立了(E)-马鞭草烯酮肟醚化合物对水稻纹枯病菌抑制活性的CoMFA模型(r~2=0.992,q~2=0.507),进行3D-QSAR研究,结果表明建立的模型可用于设计具有潜在高活性的先导化合物。  相似文献   

12.
以β-蒎烯为原料、碱性高锰酸钾为氧化剂合成了诺蒎酸,诺蒎酸酸性脱水并重排开环得到4-异丙基-1,3-环己二烯酸(二氢枯茗酸).二氢枯茗酸与氯化亚砜反应生成酰氯,再与各种醇反应生成了14个酯衍生物,通过IR、1H NMR、MS对产物进行了结构鉴定.通过抑菌环法测试探讨了化合物的抑菌活性,结果表明,256 mg/L时,除了...  相似文献   

13.
由氢化诺卜基二甲基胺与9种卤代烃反应制得含氢化诺卜基的季铵盐化合物(氢化诺卜基二甲基烷基卤化铵),分别为氢化诺卜基二甲基乙基溴化铵(2a)、氢化诺卜基二甲基正丙基溴化铵(2b)、氢化诺卜基二甲基正丁基溴化铵(2c)、氢化诺卜基二甲基正戊基溴化铵(2d)、氢化诺卜基二甲基苄基溴化铵(2e)、氢化诺卜基二甲基苄基氯化铵(2f)、氢化诺卜基二甲基乙基碘化铵(2g)、氢化诺卜基二甲基正丙基碘化铵(2h)、氢化诺卜基二甲基正丁基碘化铵(2i)。采用红外光谱和核磁共振表征了它们的结构,并用菌丝生长速率法测试了9种化合物对8种植物病原真菌的抑制效果,结果表明:在药液质量浓度为500 mg/L下,9种化合物对8种供试病原菌均具有一定的抑制效果,其中2d的抑菌效果最好,对层出镰刀菌、梨链格孢菌、辣椒菌核病菌、毛竹枯梢病菌、松枯梢病菌的抑菌率均达到100%,2b、2c和2f也具有优异的抑菌性能,对辣椒菌核病菌的抑菌率均达到100%。  相似文献   

14.
以松节油为原料合成了3-对■烯-1-胺,继而以磺酰氯为磺酰化试剂、三乙胺为缚酸剂,合成了10种3-对■烯-1-磺酰胺类化合物(2a~2j)。通过FT-IR、1H NMR、13C NMR和LC-MS对所合成化合物的结构进行了表征,并评价了其对稗草的芽后除草活性。研究结果表明:3-对■烯-1-磺酰胺类化合物的收率为60%~87%,各种结构表征图谱与化合物特征相符,表明成功合成了目标化合物。部分化合物对稗草的生长抑制作用明显,其中3-对■烯-1-丙基磺酰胺(2f)的除草活性最好,对茎长和根长的半数抑制浓度(IC50)值分别为0.36和0.17 mmol/L。细胞毒性试验结果表明:3-对■烯-1-基磺酰胺类化合物毒性较低,对正常人脐静脉血管内皮细胞HUVEC-C和小鼠胚胎成纤维细胞BALB/C 3T3的体外增殖均无显著抑制。构效关系分析表明:含烷基的磺酰胺衍生物的除草活性明显高于含芳基的,当烷基为3个碳原子时活性最好,但是当烷基上连有吸电子基团时会减弱其活性;苯环或萘环上连有给电子基团(甲基、甲氧基)时活性比连吸电子基团(F、C...  相似文献   

15.
以L-香芹酮(1)为原料,经盐酸羟胺肟化和O-磺酰化反应,合成得到23个未见文献报道的L-香芹酮基磺酸肟酯类化合物3a~3w,并通过1H NMR、13C NMR、FT-IR和HRMS对目标化合物的结构进行了表征。采用琼脂稀释法测试了目标化合物对8种植物病原菌的抑制活性。结果表明:在质量浓度50 mg/L时,目标化合物对所测试的8种植物病原菌均有一定的抑菌活性,其中化合物3b(R=o-FPh)、3c(R=m-FPh)和3h(R=p-ClPh)对苹果轮纹病菌的抑制率分别为76.7%、 75.9%和78.3%(均为B级活性水平),均优于阳性对照百菌清;化合物3h对黄瓜枯萎病菌、苹果轮纹病菌、玉米小斑病菌和西瓜炭疽病菌的抑制率分别为78.4%、 78.3%、 82.2%和78.8%(均为B级活性水平),具有一定的广谱抑菌活性;化合物3b对苹果轮纹病菌、玉米小斑病菌和西瓜炭疽病菌的抑制率分别为76.7%、 77.5%和78.6%(均为B级活性水平),也具有一定的广谱抑菌活性。  相似文献   

16.
采用水蒸气蒸馏法提取不同生长条件下肉桂叶精油,经气相色谱-质谱联用(GC-MS)技术分析精油化学成分,峰面积归一化法测定其含量,并通过滤纸片法研究了精油对常见的3种致病菌的抑菌活性。研究结果表明:树龄、种植密度和坡向对肉桂叶精油得率均有影响,其中树龄的影响最大,15年生疏植(No.3)精油得率最高(1.60%),20年生(No.7)最低(0.51%);坡向的影响其次,15年生南坡(No.5)精油得率(1.20%)高于15年生北坡(No.6,0.55%);种植密度的影响最小,15年生疏植(No.3)精油得率(1.60%)略高于15年生密植(No.4,1.34%)。不同生长条件下肉桂叶精油的成分均有差异,7份精油共鉴定出28种化学成分,其中15年生疏植(No.3)的精油成分最多(21种),15年生密植(No.4)和15年生南坡(No.5)最少,均为7种,共有组分为苯甲醛、苯丙醛、顺式肉桂醛和反式肉桂醛。反式肉桂醛在7份精油中均为GC含量最高的成分,在15年生密植(No.4)精油中GC含量最高(90.26%),在10年生(No.2)中GC含量最低(67.73%)。7份精油质量浓度均为500 ...  相似文献   

17.
研究了以β-蒎烯为原料合成3-亚甲基诺蒎酮的反应.以丙酮为溶剂,以酸性高锰酸钾为氧化剂,β-蒎烯经选择性氧化生成诺蒎酮,研究了氧化剂体系、溶剂体系、反应温度和反应时间对β-蒎烯氧化选择性及诺蒎酮得率的影响.采用KOH为催化剂、37%甲醛水溶液为羟甲基化试剂与诺蒎酮进行羟醛缩合反应得到3-亚甲基诺蒎酮,探讨了诺蒎酮与甲醛物质的量之比、催化剂种类及用量、溶剂体系、反应温度以及反应时间等因素对反应的影响,并采用正交试验法优化了羟醛缩合反应工艺,并确定了适宜的合成工艺条件:n(甲醛)与n(诺蒎酮)为21∶1,n(KOH)与n(诺蒎酮)为1.5∶1,反应在无溶剂存在下进行,反应温度65 qc,反应时间2h.在此工艺条件下,3-亚甲基诺蒎酮得率大于92%.采用GC-MS、FT-IR、1H NMR、13C NMR等手段对合成所得产物的化学结构进行了分析测定.  相似文献   

18.
以茴脑氧化得到的茴香醛为原料,经与丙酸酐的Perkin缩合反应,制备保持有茴脑中苯丙素类C6-C3活性结构单元的羧酸,再经酯化、肼解和N-酰化反应,合成得到19个茴脑基双酰肼化合物(6a~6s)。采用FT-IR、1H NMR、13C NMR和ESI-MS对目标化合物结构进行了表征,并测试了目标化合物对8种植物病原菌的抑制活性。研究结果表明:在质量浓度50 mg/L时,目标化合物对8种植物病原菌均显示出一定的抑菌活性,其中,化合物6a(R=H)、6f(R=m-Cl)、6o(R=p-I)、6p(R=p-OH)和6q(R=p-t-Bu)对苹果轮纹病菌的抑制率分别为94.8%、 96.1%、 91.7%、 96.1%和91.7%,均为A级活性水平,远优于阳性对照百菌清。化合物6f(R=m-Cl)和6p(R=p-OH)值得进一步研究。  相似文献   

19.
研究了以(2R,4aS)-异长叶烯酮为原料合成α-溴代异长叶烯酮的溴代反应。采用乙酸乙酯为溶剂,异长叶烯酮与溴化铜进行溴代反应得到两种同分异构体,经制备液相色谱分离纯化后,用~1H NMR,FT-IR,GC-MS,比旋光度和X射线单晶衍射等分析手段,确定其结构分别为(2R,4aR,6R)-(+)-6-Br-异长叶烯酮液体([α]_D~(25)+81°)和(2R,4aR,6S)-(-)-6-Br-异长叶烯酮晶体([α]_D~(25)-58°);探讨了制备工艺条件对溴代产物的影响。结果表明:在以乙醇为溶剂、溴化铜为溴代试剂的反应体系中,异长叶烯酮能选择性溴代生成(2R,4aR,6S)-(-)-6-Br-异长叶烯酮,且最佳制备工艺条件为异长叶烯酮6.54 g(0.03 mol),溴化铜与异长叶烯酮的物质的量之比为3∶1,溶剂乙醇用量60 m L,反应温度为78℃,反应时间为3 h。在此条件下,异长烯酮转化率为95.72%,(2R,4aR,6S)-(-)-6-Br-异长叶烯酮的得率为88.39%。  相似文献   

20.
以双酚A为起始原料,经过硝化、溴代反应,合成了2,2-二(3-溴-4-羟基-5-硝基苯基)丙烷,产率为83.1%.由IR、1HNMR、13CNMR和MS对目标产物的结构进行表征,所得数据与产物结构相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号