首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoflavones in soy protein foods are thought to contribute to the cholesterol-lowering effect observed when these products are fed to humans. The group B saponins are another ethanol-soluble phytochemical fraction associated with soy proteins and isoflavones and have also been associated with cholesterol-lowering abilities. We measured the group B soyasaponin concentrations in a variety of soy foods and ingredients in the U.S. Department of AgricultureIowa State University Isoflavone Database. We compared the isoflavone and soy saponin concentrations and distributions in intact soybeans, soy ingredients, and retail soy foods. Group B saponins occur in six predominant forms. There appears to be no correlation between saponin and isoflavone concentrations in intact soybeans ranging from 5 to 11 mumol isoflavones/g soybean and from 2 to 6 mumol saponin/g soybean. Depending upon the type of processing, soy ingredients have quite different saponins/isoflavones as compared to mature soybeans. In soy foods, the saponin:isoflavone ration ranges from 1:1 to 2:5, whereas in soy protein isolates, the ratio is approximately 5:3. Ethanol-washed ingredients have very low saponins and isoflavones. These very different distributions of saponins and isoflavones in soy products may affect how we view the outcome of feeding trials examining a variety of protective effects associated with soy consumption.  相似文献   

2.
Grape byproducts were subjected to an extraction process under various different experimental conditions (namely, solvent type, temperature, solvent-to-solid ratio, time contact, and raw material) in order to study the effect of these conditions on the yield of phenolic compounds and the corresponding antiradical activity of extracts. Although the order of decreasing capacity to extract soluble materials was ethanol > methanol > water, methanol was the most selective for extracting phenolic compounds. Temperature and solvent-to-solid ratio were found to have a critical role in extraction efficiency; values of 50 degrees C (between 25 and 50 degrees C) and 1:1 (between 1:1 and 5:1) maximized the antiradical activity of phenolic extracts. In addition, extracts from grape samples previously subjected to distillation reached higher antiradical values in comparison to those coming directly from pressing; in both cases, seed extracts showed better results than those of stem when ethanol or water was employed, whereas the opposite occurred in the case of methanol. These differences were attributed to the different phenolic compositions of the considered fractions.  相似文献   

3.
Our goals in this study were to track the incorporation of plant residue into soil organic matter (SOM) and test the effectiveness of different fractionation methods to evaluate this transformation. We incubated soil amended with 13C‐labelled barley (Hordeum vulgare L.) residue and used three fractionation methods based on size (> 250, 53–250, 5–53 and < 5 µm) and density (< 1.7 g cm?3, i.e. light fraction (LF)) and determined its quantity and the rate of C loss or gain or both in these fractions as decomposition progressed. One method was based on size only, another involved density separation followed by size fractionation and a third separated organic matter fractions by size first and then by density. There were significant quantitative differences between the methods for the amount of residue in the fractions, but there was no effect of fractionation method on the rate of change in the residue that comprised the fractions. The density method did not appear to identify all of the most recently added (i.e. least decomposed) residue in the LF or that there was a redistribution of SOM among the fractions. The amount of residue C and the C:N ratio of the residue in the two smallest fractions increased early during the incubation (0–2 months), but subsequently decreased towards the end. The initially small C:N ratio in the clay fraction probably reflects the accumulation of microbial by‐products from the rapid decomposition of water‐soluble compounds. The subsequent increase and decrease in both residue C and C:N ratio reflects the balance of the accumulation of sorbed water‐soluble compounds and dense plant residue fragments and their mineralization over time. We conclude that clay is a sink for residue C (i.e. microbial metabolites) early during decomposition, and that there is a transfer among fractions and mineralization of residue C as decomposition proceeds. These findings indicate that the clay fraction contains a dynamic pool of C that can cycle within short time‐scales.  相似文献   

4.
中国黑土上腐殖酸和腐殖物质的提取及其描述   总被引:7,自引:0,他引:7  
Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E~/E3 increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of HAs increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 HAs and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.  相似文献   

5.
以辣椒籽为原料,采用超声辅助法提取辣椒籽蛋白并利用响应面优化法提取工艺,在单因素试验的基础上,选取p H值,提取时间,超声功率,料液比4个因素进行响应面试验,根据所得试验结果确定最佳提取条件为:p H值11,提取时间13.31 min,超声功率336.21 W,料液比1∶35.85,在此条件下蛋白的预计提取量为5.90 g/(100 g)。利用Design expert软件对影响辣椒籽蛋白提取量的主要因素及其相互作用进行探讨,结果由大到小依次为:p H值料液比提取时间超声功率。与传统提取方法相比,超声辅助法使得蛋白提取量增加了0.81 g/(100 g)(占传统方法提取量的15.46%),蛋白纯度提高了5.47%。  相似文献   

6.
Predominant heat-induced odorants generated in soy milk by ultrahigh-temperature (UHT) processing were evaluated by sensory and instrumental techniques. Soy milks processed by UHT (143 degrees C/14 s, 143 degrees C/59 s, 154 degrees C/29 s) were compared to a control soy milk (90 degrees C/10 min) after 0, 1, and 7 days of storage (4.4 +/- 1 degrees C). Dynamic headspace dilution analysis (DHDA) and solvent-assisted flavor evaporation (SAFE) in conjunction with GC-olfactometry (GCO)/aroma extract dilution techniques and GC-MS were used to identify and quantify major aroma-active compounds. Sensory results revealed that intensities of overall aroma and sulfur and sweet aromatic flavors were affected by the processing conditions. Odorants mainly responsible for the changes in sulfur perception were methional, methanethiol, and dimethyl sulfide. Increases in 2-acetyl-1-pyrroline, 2-acetyl-thiazole, and 2-acetyl-2-thiazoline intensities were associated with roasted aromas. A marginal increase in intensity of sweet aromatic flavor could be explained by increases in 2,3-butanedione, 3-hydroxy-2-butanone, beta-damascenone, and 2- and 3-methylbutanal. Predominant lipid-derived odorants, including (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, (E,Z)-2,4-decadienal, (E)-2-nonenal, (E)-2-octenal, 1-octen-3-one, 1-octen-3-ol, and (E,Z)-2,6-nonadienal, were affected by processing conditions. Intensities of overall aroma and sulfur notes in soy milk decreased during storage, whereas other sensory attributes did not change. Color changes, evaluated by using a Chroma-meter, indicated all UHT heating conditions used in this study generated a more yellow and saturated color in soy milk in comparison to the control soy milk.  相似文献   

7.
The beta-conglycinin and glycinin fractions of soy protein were isolated from Macon, Ohio FG1, Enrei, and IL2 genotypes that were grown under the same environmental conditions. The soy protein fractions were evaluated to determine whether chemical composition and gel-forming properties were related. Amino acid analyses suggested that the hydrophobic residues may be the primary cause of differences in soy protein gel characteristics as the storage moduli increased with higher percentages of hydrophobic residues. Reversed-phase high-performance liquid chromatography profiles revealed variations in the composition of each fraction that corresponded to differences observed among the storage moduli. The gel-forming properties may be related to more than just protein content, such as the amount and type of amino acid in the fraction.  相似文献   

8.
Films containing soy protein and wheat gluten were exposed to simulated farmland soil mix over a period of 30 days and monitored for degradation. The simulated farmland soil mix (topsoil/sand/Sunshine compost/vermiculite, 59:6:25:10, wt %) was mixed and stored at ambient humidity (48-55%) and temperature (20-24 degrees C); the soil mix was constantly maintained at 15% moisture by weight. Research focused on evaluating the effectiveness of gluten and cysteine additions on biodegradable behavior in the simulated farmland soil conditions. The four types of films, soy protein (S:G 1:0); soy protein with cysteine addition (S:G 1:0 + CYS); soy protein-wheat gluten (S:G 4:1); and soy protein-wheat gluten with cysteine addition (S:G 4:1 + CYS), were prepared at pH 7. 0 for degradation studies. Soy protein-gluten film rapidly degraded with 50% weight loss in about 10 days and with up to 95% weight loss in 30 days. Tensile strength and elongation of all soy protein-gluten films significantly decreased in 3 days. However, cysteine addition delayed the degradation rate of soy protein-gluten films. Soy protein-wheat gluten film disintegrated after 20 days in the simulated farmland soil environment. These results suggest that wheat gluten and cysteine addition to soy protein-based films could delay degradation rates due to their high disulfide contents.  相似文献   

9.
This article describes the development of a new procedure that combines the use of activated charcoal and pressurized liquid extraction (PLE) to obtain enriched fractions of di- and trisaccharides from honey. Honey was adsorbed onto activated charcoal and packed into a PLE extraction cell. Optimum results were obtained at 10 MPa and 40 degrees C using two consecutive PLE cycles: first, 1:99 (v/v) ethanol/water for 5 min and second, 50:50 (v/v) ethanol/water for 10 min. Di- and trisaccharide fractions were enriched after PLE treatment, accounting for 73% and 8% of total carbohydrates, respectively. This procedure was also compared with other methodologies reported in the literature for the fractionation of honey carbohydrates (yeast treatment and extraction from activated charcoal). While the removal of monosaccharides was more efficient with yeast treatment, recovery of di- and trisaccharides was higher when either the PLE or the activated charcoal treatment was used. PLE was found to be the faster technique; it also required less solvent volume and minimized handling of the sample.  相似文献   

10.
Lentil flours were extracted with 80% ethanol at 25 and 50 degrees C for 1, 2, or 3 h. The various nitrogen fractions, soluble carbohydrates, three amino acids (Lys, His, and Tyr), available lysine, protein digestibility, and vitamins B(1) and B(2) were analyzed to evaluate the effect of extraction. Extraction resulted in an increase in the total nitrogen content of the extracted flours, with extraction temperature affecting the nature of the nitrogen (protein or nonprotein) content. There was also a large reduction in the oligosaccharides of the raffinose family, although the effect of temperature was appreciable only in the case of stachyose. There was hardly any effect on the concentrations of the amino acids analyzed or on protein digestibility; however, a positive correlation between protein digestibility and the available lysine was recorded in the samples. The vitamin B(1) and B(2) contents underwent variable decreases depending on extraction temperature.  相似文献   

11.
Lunasin and Bowman-Birk protease inhibitor (BBI) are two soybean peptides to which health-promoting properties have been attributed. Concentrations of these peptides were determined in skim fractions produced by enzyme-assisted aqueous extraction processing (EAEP) of extruded full-fat soybean flakes (an alternative to extracting oil from soybeans with hexane) and compared with similar extracts from hexane-defatted soybean meal. Oil and protein were extracted by using countercurrent two-stage EAEP of soybeans at 1:6 solids-to-liquid ratio, 50 °C, pH 9.0, and 120 rpm for 1 h. Protein-rich skim fractions were produced from extruded full-fat soybean flakes using different enzyme strategies in EAEP: 0.5% protease (wt/g extruded flakes) used in both extraction stages; 0.5% protease used only in the second extraction stage; no enzyme used in either extraction stage. Countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes was used as a control. Protein extraction yields increased from 66% to 89-96% when using countercurrent two-stage EAEP with extruded full-fat flakes compared to 85% when using countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes. Extruding full-fat soybean flakes reduced BBI activity. Enzymatic hydrolysis reduced BBI contents of EAEP skims. Lunasin, however, was more resistant to both enzymatic hydrolysis and heat denaturation. Although using enzymes in both EAEP extraction stages yielded the highest protein and oil extractions, reducing enzyme use to only the second stage preserved much of the BBI and Lunasin.  相似文献   

12.
An analytical methodology to determine the molecular weight (MW) distribution patterns of several elements among different compounds present in commonly consumed edible mushrooms is presented in this work. A hyphenated technique based on size exclusion liquid chromatography (SEC) coupled on-line to UV and inductively coupled plasma mass spectrometry (ICP-MS) detection was used. The association of the elements to high and low MW fractions was confirmed with sequential detection by UV and ICP-MS. Separation of the fractions was performed by injecting a 100 microL sample volume to a Superdex 75 column. The effect of different mobile phases on the separation was evaluated. Additionally, three different extraction conditions including 0.05 mol L(-1) NaOH, 0.05 mol L(-1) HCl, and hot water at 60 degrees C were applied to extract the elemental species from the mushroom samples. Significant differences were observed in the chromatograms depending on the extraction conditions utilized. Optimization of the experimental variables involved in the SEC-UV-ICP-MS coupling was carried out. The method was applied to investigate the fractionation patterns of Bi, Co, Cu, Fe, I, Mo, Ni, Se, and Zn in fungi porcini (Boletus edulis) mushroom. The results obtained in this work indicate an important association of most of the elements to high MW fractions.  相似文献   

13.
On-line hyphenation of size exclusion chromatography (SEC), UV, and inductively coupled plasma mass spectrometry (ICP-MS) was used to study the molecular weight distribution patterns of several elements in Brazil nuts (Bertholletia excelsa). This technique was used for the elemental speciation of different elements of nutritional and toxicological interests such as Mg, Fe, Co, Mo, Ag, Hg, and Pb. Elemental fractionation in Brazil nuts was studied using a Superdex peptide column with resolving capacity in the range of 14 to 0.18 kDa. Three different mobile phases, Tris buffer solution (pH 8.0), phosphate buffer (pH 7.5), and CAPS buffer solution (pH 10.0), were tried for the SEC fractionation. Size exclusion fractionation of all the extracted solutions was performed using a 50 mmol L(-)(1) Tris buffer (pH 8) as the mobile phase at a flow rate of 0.6 mL min(-)(1). Three different extractions, 0.05 mol L(-)(1) NaOH, 0.05 mol L(-)(1) HCl, and hot water at 60 degrees C, were performed, and the association of elements with various molecular weight fractions was evaluated. Total elemental concentrations in the extracted samples were determined and compared with the values obtained after total digestion to calculate the recovery values. Generally, high extraction efficiency was obtained with the NaOH solution as compared with HCl and hot water except in the case of magnesium, for which HCl was found to be a good extractant. Chromatographic elution profiles for these extractions were quite distinct from each other in most cases. Most of the elemental species were found to be associated with high molecular weight fractions. To study the differences obtained during the sample-processing step, the results obtained for nuts with shell were treated differently from those obtained for nuts purchased without shell and were compared.  相似文献   

14.
Isoflavones are novel nutraceutical constituents of soybeans, but considerable amounts are lost in the whey during conventional tofu manufacturing. In this study, in a small-scale process, 2 mL of koji enzyme extract (soybean koji/deionized water, 1/3, w/v) was combined with 600 mL of soy milk, and 30 mL aliquots were incubated at 35 degrees C for 0, 30, 60, 120, and 300 min, for enzyme pretreatment. After each treatment time, soy milk was heated to 85 degrees C, CaSO4 was added to aggregate protein, and the mixture was centrifuged to separate the solids (tofu) from the whey. The tofu yield and moisture contents from soy milk treated for 30 or 60 min were higher than those from soy milk treated for 0 (control), 120, or 300 min. The protein content of freeze-dried tofu varied in a limited range, and native PAGE and SDS-PAGE patterns revealed slight quantitative and qualitative variations among products. Soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased as the time of enzyme pretreatment of the soy milk increased. After 30 min of pretreatment, daidzin, genistin, daidzein, and genistein contents recovered in tofu products were higher than those of the control. In a pilot-scale process, aliquots (3 L) of soy milk were enzyme-treated for 30 min, aggregated with CaSO4, and hydraulically pressed to remove the whey. As in pretreatments, soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased. In a comparison of the control and enzyme-treated tofu products, the total recoveries of daidzin, genistin, daidzein, and genistein in the tofu products increased from 54.9% to 64.2%. When the tofu products were subjected to a sensory panel test, both products were judged acceptable.  相似文献   

15.
On a sandy tropical soil, organic materials (prunings of Leucaena leucocephala, Senna siamea and maize stover) with contrasting C/N ratio (13, 18 and 56, respectively) were applied at the rate of 15 t ha?1a?1 in order to increase the amount of soil organic matter. Two light fractions (LF1 = LF > 2 mm and LF2 = 0.25 mm < LF < 2 mm) and the heavy fraction (HF) of the soil organic matter pool were determined by means of a combined density/particle size fractionation procedure and data obtained were related to soil nitrogen mineralization under controlled conditions and to nitrogen uptake by maize under field conditions. Under controlled conditions and when the LF1 fraction was excluded, nitrogen mineralization was found not to be correlated to total organic carbon content in the soil (R2=0.02). The R2-value of the linear regression increased considerably, when amount and C/N ratio of the LF2 fraction was taken into account in the regression analysis (R2 = 0.88). Under field conditions, a multiple linear regression with amount and C/N ratio of HF, LF1 and LF2 better explained variation in crop nitrogen content and nitrogen uptake of maize (R2 = 0.78 and 0.94) than a simple linear regression with total organic carbon (R2 = 0.48 and 0.76). The results illustrate the importance of the two light and heavy organic matter fractions for estimating soil nitrogen mineralization. Determination of light and heavy soil organic matter fractions by density/particle size fractionation seems to be a promising tool to characterize functional pools of soil organic matter.  相似文献   

16.
Dried egg white protein was heated at 120°C for 1 hr, added to a fresh wheat flour (protein 8.6%), and the protein and wheat flour were subjected to acetic acid (pH 3.5) fractionation. The results showed that egg white protein increased the binding between prime starch (PS) and tailings (T) fractions in wheat flour. Several conditions for heating of egg white protein were examined to determine 1) the effect of the amount of water added to the protein before heating; 2) the effect of heating time (hr) on protein at 120°C; and 3) the effect of heating temperature on the binding between PS and T fractions. The amount of protein per 50.0 g of wheat flour was further examined for the maximum binding between PS and T fractions. The heated egg white protein was analyzed by Fourier transform infrared (FT‐IR) spectroscopy, and the changes in the secondary structures (α‐helix, β‐sheets, and others) of the protein caused by heating were studied. When egg white protein was heated at 120°C for 8 hr, 9.0% of the α‐helix structures of egg white protein decreased to 3.0%, and 37.0% of the β‐sheet structures increased to 41.0%. The decrease of α‐helix and increase of β‐sheet structures of heated egg white protein were related to the increase in the binding between PS and T fractions in the same heated egg white protein and wheat flour sample. A relationship between the structural changes in heated egg white protein (180°C, 1 hr) and the binding between PS and T fractions in the heated egg white protein and wheat flour was also observed.  相似文献   

17.
In this contribution, we have analyzed the effect of sucrose on dynamic interfacial (dynamic surface pressure and surface dilatational properties) and foaming (foam capacity and foam stability) characteristics of soy globulins (7S and 11S). The protein (at 1 x 10(-3), 1 x 10(-2), 0.1, and 1 wt %) and sucrose (at 0, 0.25, 0.5, and 1.0 M) concentrations in aqueous solution and the pH (at 5 and 7), and ionic strength (at 0.05 and 0.5 M) were analyzed as variables. The temperature was maintained constant at 20 degrees C. We have observed the following. (i) The dynamics of adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depend on the peculiar molecular features of proteins (7S or 11S soy globulin) and the level of association/dissociation of these proteins by varying the pH and ionic strength, as well as the effect of sucrose in the aqueous phase on the unfolding of the protein. The rate of adsorption increases with the protein concentration in solution, at pH 7 compared to pH 5, at high ionic strength, and in the absence of sucrose. (ii) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior. The surface dilatational modulus increases at pH 7 compared to pH 5, but decreases with the addition of sucrose into the aqueous phase. (iii) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface play an important role in the formation of foams generated from aqueous solutions of soy globulins. (iv) The increased interfacial adsorption (at high surface pressures) and the combined effects of interfacial adsorption and interfacial interactions between adsorbed soy globulin molecules (at high surface dilatational modulus) can explain the higher stability of the foam, with few exceptions.  相似文献   

18.
Soy foods contain significant health-promoting components but also may contain beany flavor and trypsin inhibitor activity (TIA), which can cause pancreatic disease if present at a high level. Thermal processing can inactivate TIA and lipoxygenase. Ultrahigh-temperature (UHT) processing is relatively new for manufacturing soy milk. Simultaneous elimination of TIA and soy odor by UHT processing for enhancing soy milk quality has not been reported. The objective was to determine TIA in soy milk processed by traditional, steam injection, blanching, and UHT methods and to compare the products with commercial soy milk products. Soybean was soaked and blanched at 70-85 degrees C for 30 s-7.5 min. The blanched beans were made into base soy milk. The hexanal content of the base soy milk was determined by gas chromatography to determine the best conditions for further thermal processing by indirect and direct UHT methods at 135-150 degrees C for 10-50 s using the Microthermics processor. Soy milk was also made from soaked soybeans by traditional batch cooking and steaming methods. Eighteen commercial products were selected from the supermarket. Residual TIA in soy milk processed by the traditional and steam injection to 100 degrees C for 20 min was approximately 13%. Blanching could inactivate 25-50% of TIAs of the raw soy milk. The blanch conditions of 80 degrees C and 2 min were selected for UHT processing because these conditions produced blanched soy milk without hexanal, indicating a complete heat inactivation of lipoxygenases. The TIA decreased with increased temperature and time of UHT heating. The maximal trypsin inhibitor inactivation was achieved by UHT direct and indirect methods with residual activities of approximately 10%. Some commercial soy milk products contained high TIAs. The results are important to the food industry and consumers. Kinetic analysis showed that heat inactivation (denaturation) of TIA, under the continuous processing conditions of the Microthermics processor, followed first-order reaction kinetics, and the activation energy of the inactivation was 34 kJ/mol.  相似文献   

19.
Protein hydrolysates (5, 10, and 15% degrees of hydrolysis) were made from minced salmon muscle treated with one of four alkaline proteases (Alcalase 2.4L, Flavourzyme 1000L, Corolase PN-L, and Corolase 7089) or endogenous digestive proteases. Reaction conditions were controlled at pH 7.5, 40 degrees C, and 7.5% protein content, and enzymes were added on the basis of standardized activity units (Azocoll units). Proteases were heat inactivated, insoluble and unhydrolyzed material was centrifuged out, and soluble protein fractions were recovered and lyophilized. Substrate specificities for the proteases was clearly different. Protein content for the hydrolysates ranged from 71.7 to 88.4%, and lipid content was very low. Nitrogen recovery ranged from 40.6 to 79.9%. The nitrogen solubility index was comparable to that of egg albumin and ranged from 92.4 to 99.7%. Solubility was high over a wide range of pH. The water-holding capacity of fish protein hydrolysates added at 1.5% in a model food system of frozen minced salmon patties was tested. Drip loss was on average lower for the fish protein hydrolysates than for egg albumin and soy protein concentrate, especially for Alcalase hydrolysates. Emulsification capacity for fish protein hydrolysates ranged quite a bit (75-299 mL of oil emulsified per 200 mg of protein), and some were better than soy protein concentrate (180 mL of oil emulsified per 200 mg of protein), but egg albumin had the highest emulsifying capacity (417 mL of oil emulsified per 200 mg of protein). Emulsification stability for fish protein hydrolysates (50-70%) was similar to or lower than those of egg albumin (73%) or soy protein concentrate (68%). Fat absorption was greater for 5 and 10% degrees of hydrolysis fish protein hydrolysates (3.22-5.90 mL of oil/g of protein) than for 15% hydrolysates, and all had greater fat absorption than egg albumin (2. 36 mL of oil/g of protein) or soy protein concentrate (2.90 mL of oil/g of protein).  相似文献   

20.
Isoflavone profile and biological activity of soy bread   总被引:3,自引:0,他引:3  
The present study examines the ability of isoflavone extracts from whole soy bread and two soy bread fractions, crumb and crust, to modulate the proliferation of human prostate cancer PC-3 cells. Total isoflavone content in the two fractions of soy bread were similar (3.17 micromol/g dry basis). However, their conjugate patterns were altered. Both fractions of soy bread contained a similar level of isoflavone aglycones ( approximately 24%). Low concentrations of soy bread extracts increased PC-3 cell proliferation as much as 47% compared to untreated control. This proliferative effect in cell growth was reduced at higher extract concentration. Soy bread crust extract (10 mg/mL) reduced PC-3 cell proliferation by 15% compared to untreated control. Interestingly, wheat bread extracts increased cell proliferation at all concentrations tested. Although extracts from both breads possessed biological activity, only soy bread crust extract reduced PC-3 cell proliferation. This observation may be related to the presence of soy in this bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号