首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breeding programmes in common bean (Phaseolus vulgaris L.) have mainly focused on performance under monoculture conditions. Interactions among cultivars and cropping systems do occur and genotypes bred for pure cropping may not be suitable for intercropping. This study was undertaken to obtain estimates of genetic parameters of quality traits for bush bean landraces grown in two cropping systems, and the interrelationships of these traits between pure cropping and intercropping with maize (Zea mays L.). Field experiments were conducted at two locations for two years. Expression of most traits was not strongly influenced by genotype × environment interactions. Heritability estimates were similar in both cropping systems for most pod and seed quality traits. Positive correlations were observed between pure cropping and intercropping for pod characters (weight, length, width and texture) and seed characters (dry and imbided weight, length, hardness, coat proportion, water absorption and crude protein). Use of a selection index is suggested for breeding for seed size, water absorption,coat proportion and crude protein for both cropping systems. However, larger gains would be expected in pure cropping for most traits. Bean accessions PHA-0267, PHA-0285, PHA-0286 and PHA-0299 should be used for developing acceptable culinary and high protein breeding lines for either cropping system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Common bean (Phaseolus vulgaris L.), an important food crop in Europe, America, Africa and Asia, is thought to fix only small amounts of atmospheric nitrogen. It contributes significantly to the sustainability of traditional cropping systems because of the predominance of small-scale farmers who cultivate beans in those areas. The objectives of this work were to evaluate bush bean varieties under common agronomic cropping systems and to evaluate breeding lines under low N-fertility sole cropping and intercropping systems. The purpose of the study was to characterize the genotype and cropping system's variability in symbiotic and plant characters and to identify the most suitable genotypes to establish an effective symbiosis with indigenous strains of Rhizobium. No significant differences among the bush bean varieties evaluated under typical fertilization practices were observed for N2-fixation and plant traits except for seed nitrogen. Significant differences among the bean lines studied under low N-fertilization conditions were detected for plant growth,plant component and N2-fixation traits. A significant interaction of bean genotype x cropping system was found for number of nodules per plant and nodule moisture on the bush bean varieties studied, and for days to emergence, days to flowering, end of flowering, shoot length, root dry weight and shoot nitrogen on the bean lines evaluated. Nodulation parameters were correlated positively with the yield components, shoot and root parts and duration of flowering, and correlated negatively with seed crude protein, pod and seed dimensions and seed dry weight. These observations indicate that it may be possible to increase both the symbiotic N2-fixation and seed yield through plant breeding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The selection of cultivars for the predominant cropping systems of small farms in the tropics depends to a large extent on the information obtained by testing their performance across the different systems. The main objective of this experiment was to measure the genotype × cropping system (G × CS) interaction for yield and selected agronomic traits of climbing beans (Phaseolus vulgaris L.) grown as sole crop and intercropped with two morphologically contrasting maize (Zea mays L.) cultivars. A secondary objective was to identify the most efficient and productive bean–maize intercrop combinations. Seven climbing bean genotypes were grown as sole crop and intercropped with two maize varieties, BH 140 (Mix. 1) and Guto (Mix. 2), in a factorial arranged Randomized Complete Block Design with three replications at Bako Agricultural Research Center in western Ethiopia. Main effects due to genotype and cropping system (except days to flowering) were significant for all bean traits considered. The genotypes × cropping system interaction terms were also significant for the number of seeds per pod, 100-seed weight, harvest index and seed yield. While bean seed yield significantly correlated with the number of seeds per pod (in Mix. 1) and with harvest index (in both mixtures), positive and significant correlations occurred with the number of pods per plant and 100-seed weight under sole cropping system. The correlation between bean seed yields of Mix. 1 and Mix. 2 and between Mix. 2 and sole crop were positive and significant. No such relationship was found between Mix. 1 and sole crop. The results suggest that selection of suitable climbing bean cultivars for intercropping with maize varieties predominantly grown in the area should be made under the associated culture of the two crops. Intercropping contributed to a significant reduction in seed yield of the bean genotypes due mainly to its adverse effects on the numbers of pods per plant and seeds per pod. The index tLER1 identified most bean–maize genotype combinations of Mix. 2 as biologically more efficient system than Mix. 1. On the other hand, tLER2 values of more than 1.00 for all treatments of Mix. 2 demonstrated higher overall productivity of the intercrop system when the bean genotypes were grown in association with a late-maturing and high yielding maize hybrid BH 140.  相似文献   

4.
Increased yields of some crops have resulted from indirect selection of plant architectural traits related to yield. This study examines the potential relationship between plant architecture and yield for a legume grown under intercropping, Field experiments were conducted in 1991 to examine the response of two cowpea (Vigna unguiculata (L.) Walp.) genotypes with contrasting plant habits to sole crop and intercrop with pearl millet (Pennisetum americanum (L.) Leeke), and to identify cowpea traits associated with yield under intercropping. The cultivur with a bush-type habit was higher-yielding in sole crop, whereas the cultivar with a spreading habit was higher-yielding in intercrop. For F2 cowpea populations, pod number was most highly correlated with seed yield in intercrop. The number of branches and nodes, particularly in areas with increased access to light, and increased internode length were also important in intercrop. Selection for improved yield in sole crop may not necessarily lead to improved yield in intercrop, and different plant traits may be more appropriate for cultivars intended for use in inter-crop than for those intended for use in sole crop.  相似文献   

5.
Bush bean ( Phaseolus vulgaris L.) is widely intercropped with maize ( Zea mays L.) in North-west Spain. Little information is available on the relative performance of elite bush bean cultivars when intercropped or on the effect of bush bean on performance of the maize crop. This two-environment study presents the interactions between improved bush bean cultivars and maize on yield and yield components. Eight treatments (four bean/maize intercrops and four sole crops, two of bean and two of maize) were tested using a randomized complete block design with four replications in two environments. Bean and maize were planted simultaneously in alternate rows when intercropped. Significant treatment differences were observed for bean and maize moisture, pod and cob percentage, bean and maize yield, ears per plant and ear length. Location effects were significant for bean and maize moisture and pod percentage. Significant treatment by location interactions occurred for pod percentage and ear length. Intercropping reduced yield by between 40 and 60 % for bush bean cultivars, and by 45 % for both maize cultivars. Mean yields were used to calculate the land equivalent ratio (LER), which averaged 1.01 in Pontevedra but 0.93 in La Coruña. Intercropping of bush bean with maize did not make better use of land than conventional sole cropping under these environmental conditions. It is suggested that this was probably due to the amount and distribution of rain in relation to crop growth. Approaches that might be expected to result in improved land usage are presented.  相似文献   

6.
Summary Despite the growing industrialization, technification and transformation that is happening in the agriculture around the world, and despite that agricultural research has always concentrated its effort on sole crops, multiple cropping systems have historically been important for common bean production in tropical countries. The reasons for this fact, are economical and social, as well as biological. Bean breeders have always been questioned on their work, because the development of new varieties is usually done in sole crop, but the varieties are grown in either systems. This paper addresses a set of questions that are usually presented to the breeders, in light of the evidence obtained from many trials conducted in Brazil and in the U.S.A.: Will the genotypes bred for sole crop conditions, perform well when grown in intercrop; How different should a genotype be, for cultivation in intercropping compared to genotypes developed for sole crop conditions; Is there a need for special breeding programs for intercropping and How could a breeding program focus the question of multiple (associated) cropping?  相似文献   

7.
Nature and magnitude of genetic diversity was assessed using Mahalanobis's D2 statistics and canonical analysis in 50 genotypes of soybean grown in monoculture and in association with maize. All the genotypes were grouped in 10 clusters in case of monoculture, while 8 clusters were formed for intercropping. Monoculture was more suitable environment for expressing the genetic diversity than intercrop. Some genotypes had consistently the similar clustering pattern in both the cropping systems, while others were affected by the cropping system in expressing the genetic diversity. This was confirmed by the canonical analysis. Days to flowering and maturity, seed yield/plant, plant height and 100-seed weight were mainly responsible for genetic diversity in monoculture. Besides phenological traits, pod length and width, and seed yield/plant exerted marked influence on the genetic diversity of soybean genotypes grown in association with maize. Geographical distribution was not necessarily reflected by the genetic divergence, though some degree of relationship between geographic diversity and genetic diversity was evident under both the cropping systems. The performance of some genotypes varied from cropping system to another, while that of others remained unaffected. Breeding programmes to develop varieties suitable for sole crop, intercrop and both the cropping systems have been suggested.  相似文献   

8.
Approaches are needed to broaden the genetic base and improve earliness and yield potential of large-seeded beans under sustainable cropping systems. The objective of this research was to develop adapted dwarf bean populations having a commercial seed quality and yield suitable for the production in the South of Europe. The original base populations were produced from crosses between genotypes within each Mesoamerica, Nueva Granada and Peru races, and between Peru and Nueva Granada, and Mesoamerica and Nueva Granada races. Visual mass selection for plant performance was practised in the F2 and F3 generations. In the F4 and F5, single plants were harvested under two cropping systems (sole cropping and intercropping with maize). From F4, selection was based on precocity, combined with seed yield and seed commercial type. The F4:7 selected lines from each original population were compared with their parents and five checks at four environments and two cropping systems. Differences among environments, populations, parents and checks were observed for all traits. Under intercropping with maize, there was a 50% reduction in seed yield. Yield of parents and checks belonging to Andean South American races, intraracial (Nueva Granada × Nueva Granada) and interracial (Nueva Granada × Peru) populations, was higher than that of those of Middle American origin. Intraracial crosses within large-seeded Andean South American (Peru race) and Middle American gene pools (Mesoamerica race) did not produce lines yielding more than the highest yielding parent. Only two large-seeded lines selected from crosses between small- and large-seeded gene pools out-yielded the best parent and check cultivar.  相似文献   

9.
When one of the crops is a legume, intercropping has potential to reduce fertilizer nitrogen (N) needs and increase food quality. Total dry matter (DM) and grain yields of different plant populations of intercropped maize ( Zea mays L.) and climbing beans ( Phaseolus vulgaris L.), cowpeas ( Vigna unguiculata [L.] Walp.), or velvet beans ( Mucuna pruriens [L.] DC. var utilis [Wight] Bruck.) were compared in two experiments. Maize populations were 40,400 and 50,500 plants ha−1 in combination with climbing bean populations of 0, 20,200, 40,400 and 80,800 plants ha−1 in Experiment 1. In the second experiment, climbing beans, cowpeas and velvet beans at 215,200 plants ha−1 were intercropped with maize at 64,600 plants ha−1. Climbing beans contributed up to 5% to total DM yields in the first experiment. In the second experiment legume contributions to total DM were 20% for climbing beans, 12% for cowpeas and 8% for velvet beans. Increasing populations of maize and climbing beans increased grain and DM yields. Dry matter yield of maize was lowered by intercropping. However, DM yields of the intercrop were not different to maize sole cropped. Maize/cowpeas produced more total DM than maize/climbing beans. Cowpeas increased the total yield of crude protein by over 15% without lowering total DM yield of the intercrop compared to maize alone and are promising as a legume for intercropping with maize. Climbing beans show little promise as a possible legume for intercropping with maize.  相似文献   

10.
Common bean, Phaseolus vulgaris L. is intercropped or relay cropped with maize in many Andean highlands of Colombia and Peru. Breeding beans for the target multiple cropping systems is essential for the development of productive and sustainable agriculture for the Andean smallholders. Outline of the breeding programme should follow the farming system approach with the establishment of on-farm trials and early farmers involvement. Bean breeding is oriented to minimize intercrop competition and to stabilize complementarity with maize. Genetic traits needed for improved varieties are divided as follows : traits not interacting with the cropping systems, traits specific to intercrops and traits related with socioeconomic and seed quality aspects. Screening, prebreeding and recombination nursery are better made under sole cropping while varietal improvement and on-farm trials are conducted under the target multiple cropping systems. Breeding schemes may involve recurrent, pedigree and bulk hybrid selection. The given application concerns the genetic improvement of P. coccineus, P. polyanthus and interspecific hybrids of P. vulgaris for both simultaneous and relay intercropping in Colombia and Peru. Earliness, cold tolerance, resistance to fungus diseases (mainly Ascochyta leaf blight and anthracnosis) and seed yield potential were the major objectives of the bean improvement programme. Priority has been given to the exploitation of the large diversity available in the secondary gene pool of common bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Field experiments were carried out under unstressed conditions of soil water during two summer crop growing seasons (1998–99 and 1999–2000 seasons) in a South African semi‐arid region (Bloemfontein, Free State, South Africa). The aim of this study was to investigate shade effects on beans intercropped with maize in terms of plant mass and radiation use. The experimental treatments were two cropping systems (no shading/sole cropping and shading/intercropping) and two row orientations (north–south and east–west). At the top of bean canopies shaded by maize, incident radiation was reduced by up to 90 %. Shading reduced total dry matter of beans by 67 % at the end of the growing season, resulting in yield losses. The dry matter partitioning into leaf and stem (the ratios of leaf and stem to total biomass) was about 50 % higher in intercropping than sole cropping. In contrast, intercropped beans had 40 % lower dry matter partitioning into pod (the ratio of pod to total biomass). Fraction of radiation intercepted by sole‐cropped beans steeply increased until canopy closure (0.9) and then slowly decreased, while fraction of radiation intercepted by intercropped beans remained constant between 0.0 and 0.2 throughout the growing seasons. However, intercropped beans had 77 % higher radiation use efficiency (RUE) than sole‐cropped beans. In contrast, for maize, no effect of intercropping (shading) was found on growth, partitioning, yield, radiation interception or RUE. Consequently, lower bean yield losses can be attained in association with late shading rather than early shading. This can be controlled by growing crops with different temporal and spatial treatments. As regards row treatment, no effect of row direction was found on growth, partitioning, yield, radiation interception or RUE.  相似文献   

12.
施磷对不同间作体系间作优势与磷肥利用的影响   总被引:3,自引:1,他引:2  
为了探明施磷水平对不同间作体系产量间作优势和磷肥利用的影响,在河北曲周主要研究了施磷对玉米‖蚕豆、玉米‖大豆和玉米‖油菜3种间作体系土地当量比(LER)、磷吸收量、磷肥吸收效率和磷间作优势的影响。结果表明:玉米‖蚕豆的LER是1.24~1.31,玉米‖油菜的LER是1.20~1.24,玉米‖大豆的LER是1.11~1.15,均大于1,具有明显的间作优势;3个磷水平下,吸磷量表现为玉米‖大豆>玉米‖蚕豆>玉米‖油菜,除玉米‖油菜间作体系外,比单作玉米分别高21.5%%~40.2%和13.3%~22.9%,且均随着施磷量的增加而增加,但增加幅度降低;3种间作体系均具有明显的磷间作优势,除玉米‖大豆间作体系外,施磷后均降低;磷肥吸收效率除玉米‖蚕豆在施磷90 kg/hm2外均低于单作玉米,并且随着施磷量的增加而降低。这表明,通过活化磷能力强的作物与玉米间作可以提高土壤难溶性磷的利用,玉米‖大豆和玉米‖蚕豆比玉米‖油菜效果好,适宜的施磷量为90 kg/hm2。  相似文献   

13.
Summary Nine cowpea (Vigna unguiculata (L.) Walp.) breeding lines were grown in 13 experiments under sole crop and intercrop management, with and without insecticide application, in Nigeria. Cowpea was intercropped with cassava (Manihot esculenta Cranz), maize (Zea mays L.) and maize-cassava in the forest zone and with sorghum (Sorghum bicolor Moench.) and millet (Pennisetum glaucum (L.) R.Br.) in the savanna zone. Line by cropping system interactions were significant in 5 of 13 experiments and line by insecticide treatment interactions were significant in 2 of 13 experiments. Cowpea yield was severely depressed in intercropped plots and in plots to which no insecticide was applied. Among-environment variation in cowpea yield was greater when no insecticide was applied. Within each management treatment, the yield performance and stability of the cowpea lines was examined. Stability was assessed both by examining among-environment coefficients of variation and by regression analysis. Several of the breeding lines evaluated appeared promising under different levels of management and in a diversity of environments.  相似文献   

14.
In field trials on the Loess Plateau, China, in 2012–13, maize (Zea mays L.) and soybean (Glycine max L.) were sole cropped and intercropped at three densities and with three sowing proportions. Maize was generally more growth efficient for biomass accumulation than soybean during the entire growth interval, as assessed using the relative efficiency index (REIc). However, most of sowing proportion at each density displayed a trend of decreased growth with development. Throughout the growth period, the dry matter production and leaf area index (LAI) of maize increased as the plant density increased irrespective of whether it was grown as a sole crop or as an intercrop. However, the effect of increasing cropping density was less obvious for soybean. The LAI values of the sole crop treatment for both maize and soybean were greater than that of the intercropping system, indicating that the presence of maize and soybean together suppressed the respective growth of the two crops. At the final harvest, land equivalent ratios (LER) of 0.84–1.35 indicated resource complementarity in most of the studied intercrops. Complementarity was directly affected by changes in plant densities; the greatest LER were observed in 2 rows maize and 2 rows soybean intercrops at low density. The water equivalent ratio (WER), which characterized the efficiency of water resource use in intercropping, ranged from 0.84 to 1.68, indicating variability in the effect of intercropping on water-use efficiency (WUE).  相似文献   

15.
夏闲菜田间套作糯玉米产量优势分析   总被引:3,自引:0,他引:3  
以单作糯玉米和单作蔬菜为对照,探讨了蔬菜间、套作糯玉米体系下作物干物质积累和产量差异。结果表明,间、套作糯玉米一直处于优势位,干重显著高于单作糯玉米,具有间、套作增产优势;间作青刀豆产量较单作低,造成间作体系减产;套作西兰花前期植株小、结球晚,后期加快生育进程,产量与同期单作西兰花相比无明显差异,套作体系增产10.93%~11.57%。  相似文献   

16.
Jutta Krüger 《Euphytica》1994,77(1-2):1-6
Fifty-six populations of common bean (Phaseolus vulgaris L.) were grown in Pontevedra (Northwestern Spain) in four different environments in order to study their genetic diversity in 18 agronomical traits. All characters showed significant differences among populations, and most of them had significant genotype-environment interactions. Broad-sense heritability for this pool of characters ranged from 0.87 (seed length) to 0.12 (seed yield). Sixteen populations which deserve special attention because of their breeding value for earliness, yield, pod and seed size have been identified.  相似文献   

17.
Francis Kwame Padi 《Euphytica》2007,158(1-2):11-25
Twenty-four cowpea genotypes were evaluated under sole cropping or additive series intercropping with sorghum from 2004 to 2005 at four sites representative of the Guinea and Sudan savannah ecologies in Ghana. The aim was to determine whether cowpea breeding programs that emphasize selection under sole-crop conditions have the potential to produce cultivars that are effective under additive series intercropping. Genotype × cropping systems interaction was significant for days to 50% flowering but not for grain yield, biomass and other studied traits. Genotypic yield reaction to cropping systems indicated that bridging the yield gap between sole cropping and intercropping systems is best addressed by agronomic interventions that reduce stress on intercrop cowpea rather than by selecting for specifically adapted genotypes for intercropping. Significant genotype × environment interactions were observed for all traits when data was pooled over cropping systems. Partitioning of the genotype × environment interaction variance indicated that days to 50% flowering was dominated by heterogeneity of genotypic variance, whereas genotype × environment interactions for grain yield and biomass was mainly due to imperfect correlations. Large differences in genotypic yield stability were observed as estimated by the among-environment variance, regression of yield on the environmental index, Kataoka’s index, and by partitioning of genotype × environment interaction sum of squares into components attributable to each genotype. The results suggest that in regions where genotype × environment interaction for yield frequently causes re-ranking across environments, genotypes with the least contribution to the interaction sum of squares are likely to be most productive. On the whole, the results support the contention that breeding under sole-crop conditions has the potential to produce cultivars effective under intercropping conditions.  相似文献   

18.
Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop in the semi-arid tropics, and pod fly [Melanagromyza obtusa (Malloch)] is an important emerging constraint to increase the production and productivity of this crop under subsistence farming conditions. Host plant resistance can be used as an important tool for the management of this pest. Therefore, a set of ten pigeonpea genotypes from a diverse array of plant growth types and maturity groups including two appropriate commercial checks, was evaluated for resistance to pod fly under field conditions, and characterized for physico-chemical pod traits. The non-determinate type GP 75 (extra early maturing) and GP 118 (early maturing), and determinate type GP 233 (extra early maturing) and GP 253 (early maturing) genotypes had significantly lower pod and seed damage as compared to determinate (Prabhat) and non-determinate (Manak) early maturing checks, suggesting that resistance to pod fly is not linked to plant growth type and maturity period of the genotype in pigeonpea. Pod wall thickness, trichome density, reducing and non-reducing sugars, total phenols, tannins, and crude fiber were found to be negatively associated (r = −0.83** to −0.97**), while total protein positively associated (r = 0.88** to 0.97**) with pod fly infestation. Therefore, these traits particularly total phenols, tannins, crude fiber, trichome density, and pod wall thickness, can be used as physico-chemical markers to identify pigeonpea genotypes with resistance to M. obtusa, and use in pod fly resistant breeding program in pigeonpea.  相似文献   

19.
Intercropping of chilli ( Capsicum annuum ) and dwarf bean ( Phaseolus vulgaris ) is a recently adopted practice by farmers in Sri Lanka. As chilli fetches a higher market price, the bean population which could be incorporated into a 100% population of chilli has to be found. In the present experiment, effects of three bean populations (100, 75 and 50% of sole crop population 250 000 pl ha−1) and four row arrangements (1:1, 1:2, 2:1 and 2:2) were tested at Kundasale, Sri Lanka. The land equivalent ratio (LER) of all intercrops were significantly greater than one, indicating a greater productivity per unit land area in intercropping than sole cropping. At 100% and 75% bean populations, LER and intercrop yields of bean were significantly greater than at 50%. Row arrangement did not have a significant effect on either LER or bean yield in intercrops. Intercrop bean yields were lower than sole bean yields indicating significant competition from chilli. Chilli yields were not affected by either bean population or row arrangement. Intercrop chilli yields were greater than the sole chilli yield indicating significant positive effects from bean. Greater radiation interception and lower weed growth and the absence of overlap between yield formation periods of the two component crops were probably responsible for the greater productivity (LER) of intercrops.  相似文献   

20.
Results reported in the literature with regard to productivity of intercropping systems in comparison to sole cropping are very inconsistent. A field experiment was therefore conducted in the northern part of the Guinea Savanna in Ghana to compare the productivity of maize/cowpea mixed cropping, maize/cowpea relay intercropping with maize/cowpea rotation and maize monocropping over a 4-year period. The treatments included two levels of nitrogen (0 and 80 kg of N ha−1 y −1 as urea) and two levels of phosphorus application (0 and 60 kg of P ha−1 y−1 as Volta phosphate rock). At all levels of N and P application, maize yields of the intercropping systems, especially of maize/cowpea mixed cropping, were significantly lower than in sole cropping. Highest maize yields were obtained in maize/cowpea rotation, which in contrast to the other cropping systems did not show any reductions in yields over years. Cowpea yields were generally less affected by the cropping system, but were notably depressed when cowpea was relay-intercropped with maize. In treatments without fertilizer application (N and P) Land Equivalent Ratios (LER) and Area x Time Equivalency Ratios (ATER) generally indicated lower productivity of the intercropping systems as compared to sole cropping, with the maize/cowpea rotation showing the highest productivity. Conversely, fertilizer application resulted in higher productivity of the intercropping systems over the 4-year period. Productivity on the basis of ATER was generally lowest in maize/cowpea relay-intercropping as a consequence of the long time of land occupation. All of the parameters indicate low productivity of maize monocropping, clearly demonstrating that crop sequence as well as fertilizer application must be considered as important for maintaining high production levels at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号