首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount of messenger RNA (mRNA) for luteinizing hormone beta-subunit (LH beta), follicle-stimulating hormone beta-subunit (FSH beta) and alpha-subunit was measured during estradiol-17 beta (E) positive feedback in ovariectomized (OVX) ewes. During the anestrous season, OVX ewes were given an i.m. injection of E (25 micrograms: n = 5) or oil (control; n = 4) and hourly blood samples were collected for 16 hr. After blood collection, ewes were killed and anterior pituitary glands were removed for analysis of hormone and mRNA content. Preovulatory-like increases in serum concentrations of LH and FSH were measured in E-treated OVX ewes. In two E-treated OVX ewes the serum concentrations of LH and FSH were still increasing, whereas in the remaining three E-treated OVX ewes, serum concentrations of LH were on the decreasing portion of the E-induced preovulatory-like surge. Pituitary content of LH was lower (P less than .10) in E-treated OVX ewes when serum concentrations of LH were decreasing than that measured in control ewes or E-treated OVX ewes in which serum concentrations were still increasing. Pituitary content of FSH and prolactin were similar (P greater than .05) among all groups. The amount of mRNA for LH beta-subunit was similar (P greater than .05) in ewes in which serum concentrations of LH were increasing and in control ewes, but was lower (P less than .05) in ewes with decreasing levels of LH. The amount of mRNA for FSH beta-subunit was lower (P less than .05) in all E-treated OVX ewes (independent of whether serum concentrations of FSH were increasing or decreasing) than that measured in control ewes. There was no difference (P greater than .05) in the amount of mRNA for alpha-subunit among any groups. Thus, amounts of mRNA for the beta-subunits of gonadotropins are reduced, while amounts of mRNA for alpha-subunit are unchanged during estradiol positive feedback in OVX ewes.  相似文献   

2.
Effects of pituitary stalk-transection on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) prolactin (PRL) and progesterone were investigated during the estrous cycle of ewes. Pituitary stalk (SS) or sham (SH) transection was performed on day 1 (estrus = day 0) of the estrous cycle. A Teflon or Silastic barrier was placed between the cut ends of the stalk to prevent reorganization of the portal vasculature. Immediately following surgery, pulsatile administration of gonadotropin releasing hormone (GnRH, 200 ng/hr) or .9% NaCl was initiated and continued for the duration of the experiment. Estradiol benzoate (EB, 50 μg im) was administered to all ewes on day 3. Mean concentrations of LH were greater in SS ewes than in SH ewes (P<.05). There was a trend (P=.06) for the concentration of LH to be higher in ewes with Teflon compared with Silastic barriers between the cut ends of the stalk. Infusion of GnRH elevated concentrations of LH in both SS and SH ewes (P<.05). Concentrations of progesterone were reduced (P<.01) in saline-infused SS ewes while infusion of GnRH in SS ewes maintained concentrations of progesterone similar to saline-infused SH ewes. The concentrations of FSH or PRL were unaffected by SS, type of barrier or treatment with GnRH. Administration of EB failed to induce a surge of LH except in a SH ewe infused with GnRH. Ewes were more responsive to infusion of GnRH following SS than after SH as reflected by increased plasma concentrations of LH and progesterone.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) is released from hypothalamic neurons into the hypophyseal-portal blood system following enzymatic cleavage of the decapeptide from a large precursor (proGnRH) molecule. The purpose of this study was to determine whether the ability of GnRH-producing neurons to synthesize and/or process proGnRH differed during physiological states associated with a suppressed and enhanced release of GnRH in ewes. Tissues were collected from ovariectomized ewes (OVX, N=4), OVX-estradiol treated ewes (OVX-E, N=5), and ewes (n=7) slaughtered 5 d after parturition (PP). Following euthanasia and exsanguination, stalk-median eminence (SME), medial-basal hypothalamus (MBH) and preoptic areas (POA) were collected. Concentrations of GnRH and proGnRH were determined by radioimmunoassay using specific antisera. Concentrations of GnRH in the SME did not differ (P>.05) between OVX-E and OVX ewes, but both groups contained less (P<.05) GnRH than the SME from PP ewes (4.4 ± 0.7, 12.1 ± 3.8 vs 24.3 ± 5.1 fmol/mg tissue, respectively). Concentrations of proGnRH in SME mimicked those of GnRH and were less (P<.05) in OVX-E ewes than PP ewes, but were not different (P>.05) from those in OVX ewes (.34 ± .34 vs 3.76 ± 1.53 and 1.7 ± .78 fmol/mg, respectively). In the MBH, OVX-E ewes had greater (P<.05) concentrations of GnRH than PP ewes (0.76 ± 0.29 vs 0.24 ± 0.04 fmol/mg) and OVX ewes were intermediate (0.41 ± 0.13 fmol/mg). No differences (P>.05) in concentrations of GnRH in the POA were detected among groups. Concentrations of proGnRH in MBH and POA were not different (P>.05) among groups. In summary, proGnRH is present in the SME which contains nerve terminals of GnRH-producing cells. Although concentrations of proGnRH and GnRH in the SME and MBH were affected by physiological state, ratio's of the prohormone:mature decapeptide remained constant. Therefore, alterations in posttranslational processing of the prohormone leading to formation of the mature GnRH-decapeptide were not demonstrated.  相似文献   

4.
Ovariectomized (OVX) ewes were injected with 5 ml of either bovine serum, charcoalextracted bovine follicular fluid (FF), or whole bovine FF. Five hours after this pretreatment, ewes on each pretreatment were injected with either 0, 1, or 5 μg of GnRH. Ewes that were pretreated with either type of FF had decreased concentrations of FSH regardless of dose of GnRH when compared to ewes pretreated with bovine serum. There was no effect of charcoal extraction. There were no differences among the pretreatment groups in LH response to GnRH. In a second experiment, OVX ewes were pretreated (4 ml) with either bovine serum or bovine FF 5 hr prior to GnRH or with bovine FF 42, 30 and 18 hr prior to GnRH. Ewes were injected with either 0 or 5 μg of GnRH. Pretreatment with FF for 5 or 42 hr prior to GnRH resulted in significantly decreased concentrations of FSH both at the time of GnRH treatment and during the following 2 hr. Concentrations of LH did not differ among pretreatment groups. In a third experiment, OVX ewes were pretreated with either bovine serum or bovine FF 30, 18 and 5 hr prior to GnRH. Ewes were injected with either 0, 5 or 50 μg of GnRH. Pretreatment with FF resulted in decreased concentrations of FSH both at the time of GnRH treatment and during the following 2 hr. Concentrations of LH were also decreased at the time of GnRH treatment.  相似文献   

5.
Pituitaries were collected from late follicular phase (n = 5), mid-luteal phase (n = 5), and anestrous ewes (n = 4) to assess changes in intrapituitary LH heterogeneity at selected reproductive states. After homogenization, an aliquot of each pituitary extract was desalted by flow dialysis against water and chromtofocused on a pH 10.5 to 4.0 gradient. Concentrations of LH in pituitary extracts and chromatofocusing fractions were determined by RIA. The LH in pituitary extracts resolved into 13 isoforms during chromatofocusing, which were coded with letters beginning with the most basic isoform. Follicular and mid-luteal phase ewes exhibited similar distributions of intrapituitary LH among its isoforms. Relative to follicular and luteal phase ewes, anestrous ewes had lower percentages of isoforms D and E as well as higher percentages of isoforms G, H, J and K. Isoform F, the predominant molecular form of LH, constituted a similar percentage in all treatment groups (P > .05). Thus, the distribution of intrapituitary LH among its isoforms did not change significantly between the mid-luteal and follicular phases of the estrous cycle, but higher percentages of the weakly basic and acidic forms of LH were present during anestrus. These observations suggest that intrapituitary LH heterogeneity changes minimally throughout the estrous cycle of ewes during the breeding season.  相似文献   

6.
The Controlled Internal Drug Releasing (CIDR) device is an intravaginal pessary containing progesterone (P4) designed for synchronizing estrus in ruminants. To date, there has been little information available on the timing, duration, and quality of the follicular phase after CIDR removal and how those characteristics compare with natural periovulatory endocrine events. The present communication relates the results of methods we used to characterize the endocrine events that followed CIDR synchronization. Breeding-season ewes were given an injection (10 mg) of Lutalyse (PGF), and then studied during three consecutive estrous cycles, beginning in the luteal phase after the estrus induced by PGF. Cycle 1 estrus was synchronized with 1 CIDR (Type G) inserted for 8 d beginning 10 d after PGF. Cycles 2 and 3 were synchronized with two CIDRs for 8 d beginning 10 d after previous CIDR removal. Cycle 1 estrous behavior and serum gonadotropins showed a follicular phase (the interval from CIDR withdrawal to gonadotropin surge [surge] peak) of 38.2 ± 1.5 hr. Two CIDRs lengthened the interval to 46.2 ± 1.5 hr (P < 0.0001). At CIDR removal, circulating P4 concentrations were higher in ewes treated with two CIDRs (5.1 ± 0.3 and 6.4 ± 0.4 ng/mL in Cycles 2 and 3 vs. 2.7 ± 0.3 ng/mL in Cycle 1), whereas estradiol concentrations were higher in the 1 CIDR cycle (3.3 ± 0.5 pg/mL in Cycle 1 vs. 0.5 ± 0.1, and 0.7 ± 0.2 pg/mL in Cycles 2 and 3), suggesting that the lower levels of P4 achieved with one CIDR was not sufficient to arrest follicular development. There were no differences in any other endocrine variable. Both one and two CIDR synchronization concentrated surges within a 24-hr period in 92% of the ewes in Cycles 1 and 2. Cycle 3 ewes were euthanized at estimated luteal, early follicular, late follicular, LH surge, and secondary FSH rise timepoints. Endocrine data and ovaries showed that 88% of the ewes synchronized with two CIDRs were in the predicted stage of the estrous cycle. These data demonstrate that the CIDR device applied during the luteal phase effectively synchronizes estrus and results in a CIDR removal-to-surge interval of similar length to a natural follicular phase.  相似文献   

7.
Metastin/kisspeptin, the KiSS-1 gene product, has been identified as an endogenous ligand of GPR54 that reportedly regulates GnRH/LH surges and estrous cyclicity in female rats. The aim of the present study was to determine if metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges. We demonstrated that preoptic area (POA) infusion of the anti-rat metastin/kisspeptin monoclonal antibody blocked the estrogen-induced LH surge, indicating that endogenous metastin/kisspeptin released around the POA mediates the estrogen positive feedback effect on GnRH/LH release. Metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) may be responsible for mediating the feedback effect because the percentage of c-Fos-expressing KiSS-1 mRNA-positive cells to total KiSS-1 mRNA-positive cells was significantly higher in the afternoon than in the morning in the anteroventral periventricular nucleus (AVPV) of high estradiol (E(2))-treated females. The percentage of c-Fos-expressing metastin/kisspeptin neurons was not different between the afternoon and morning in the arcuate nucleus (ARC). Most of the KiSS-1 mRNA expressing cells contain ERalpha immunoreactivity in the AVPV and ARC. In addition, AVPV KiSS-1 mRNA expressions were highest in the proestrous afternoon and lowest in the diestrus 1 in females and were increased by estrogen treatment in ovariectomized animals. On the other hand, the ARC KiSS-1 mRNA expressions were highest at diestrus 2 and lowest at proestrous afternoon and were increased by ovariectomy and decreased by high estrogen treatment. Males lacking the surge mode of GnRH/LH release showed no obvious cluster of metastin/kisspeptin-immunoreactive neurons in the AVPV when compared with high E(2)-treated females, which showed a much greater density of these neurons. Taken together, the present study demonstrates that the AVPV metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges in female rats.  相似文献   

8.
The endocrine function of the individual components of the hypothalamo-hypophyseal-ovarian axis of the postweaning anestrous sow was evaluated by monitoring the sow's response to exogenous estradiol, gonadotropin releasing hormone (GnRH), and gonadotropins. Sows (4 to 6/group) not returning to estrus by 42.8 +/- 3.1 days after weaning were assigned to 1 of the following treatments: 10 micrograms of estradiol benzoate (EB)/kg of body weight; 200 micrograms of GnRH, 1,000 IU of pregnant mare's serum gonadotropin (PMSG); 1,000 IU of human chorionic gonadotropin (HCG); or 4 ml of saline solution plus 2 ml of corn oil. A preovulatory-like surge of luteinizing hormone [(LH) greater than 12 hours in duration] was observed in all weaned sows treated with EB. All EB-treated sows exhibited estrus and ovulated but none conceived. Sows given GnRH had transiently increased (less than 3 hours) LH concentrations that were not associated with estrus or ovulation. Treatment with PMSG caused an increase in peripheral concentrations of 17 beta-estradiol that was followed by an LH surge, estrus, ovulation, and conception. Treatment with HCG caused an increase in circulating concentrations of 17 beta-estradiol that was accompanied by a surge of LH in some sows and ovulation in all sows. Not all sows treated with HCG exhibited estrous behavior, but conception occurred in 2 of 3 sows that were mated at estrus. None of the sows treated with saline plus corn oil had consistent changes in circulatory concentrations of 17 beta-estradiol or LH and none exhibited estrus or ovulated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Kisspeptins (Kp) are a family of neuropeptides produced mainly by two hypothalamic neuronal cell populations. They have recently emerged as a major regulator of the gonadotropin axis and their action is located upstream of the gonadotropin-releasing hormone (GnRH) cell population. In less than 10 yr a growing body of literature has demonstrated the involvement of these peptides in most, if not all, aspects of reproductive axis maturation and function. In contrast to these abundant basic research studies, few experiments have evaluated the potential application of Kp as tools to manipulate reproduction in domestic animals. In mammals, exogenous Kp administration potently stimulates gonadotropin secretion. This action is exerted mainly, if not exclusively, through the stimulation of GnRH release. Intravenous, intraperitoneal, or subcutaneous administration of Kp induced a robust and rapid increase in plasma gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone [FSH]). However, this stimulatory effect is of short duration. Prolonged LH and FSH release over several hours can be achieved only when Kp are given as repeated multiple bolus or as an infusion. Kp administration was used in two experimental models, ewe and pony mare, with the aim of inducing well-timed and synchronized ovulations. During the breeding season, progesterone-synchronized ewes were given an intravenous infusion of Kp starting 30 h after the removal of progesterone implants. An LH surge was induced in all Kp-treated animals within 2 h of infusion onset. In contrast, in pony mares a constant infusion of Kp for 3 d in the the late follicular phase was unable to induce synchronized ovulation. Another set of studies showed that Kp could be used to activate reproductive function in acyclic animals. Pulsatile administration of Kp in prepubertal ewe lambs was shown to activate ovarian function, leading to enhanced ovarian steroidogenesis, stimulation of LH preovulatory surge, and ovulation. In anestrous ewes, an intravenous infusion of a low dose of Kp induced an immediate and sustained release of gonadotropins, followed a few hours later by an LH surge. This hormonal pattern mimicked hormonal changes normally observed during the estrous cycle follicular phase and was associated with a high percentage of ovulating animals (80%). In summary, exogenous administration of Kp appears to be a new tool to manipulate reproduction. However, optimal doses and periods of treatment should be defined for each species, and the development of powerful analogs or long-term release formulations is necessary before large-scale applications in domestic animals could be envisaged.  相似文献   

10.
Three experiments were conducted with ovariectomized (OVX) cows and heifers to investigate potential neuroendocrine mechanisms controlling estrous behavior. In Exp. 1, 10 OVX cows were treated with either 125 micrograms estradiol benzoate and 10 cc saline (125 micrograms EB + SAL), 125 micrograms EB and 500 micrograms gonadotropin releasing hormone (125 micrograms EB + GnRH), 250 micrograms EB and 10 cc SAL (250 micrograms EB + SAL), 250 micrograms EB and 500 micrograms GnRH (250 micrograms EB + GnRH) or 500 micrograms EB and 10 cc SAL (500 micrograms EB + SAL) in a replicated 5 X 5 Latin-square design. During the 48 h following EB injection, 2-h observation blocks were alternated with 2-h non-observation blocks. During each 2-h observation block, 14 behavioral interactions were monitored. The percentage of cows in estrus was lower for cows receiving 125 micrograms EB as compared with those given the higher doses. However, the cows receiving 125 micrograms EB + SAL did not differ in their estrous response from those receiving 125 micrograms EB + GnRH. The interval from injection to the onset of estrus and the duration of estrus were similar for all treatments. In Exp. 2, 10 OVX heifers were subjected to the same treatments and observation procedures utilized in Exp. 1. The results of Exp. 2 were similar to those of Exp. 1. In Exp. 3, 10 OVX cows were treated with either 300, 600, 1,200, 2,400 or 4,800 micrograms EB in a replicated 5 X 5 Latin-square design.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The bed nucleus of the stria terminalis (BNST) is one of the brain areas densely innervated by noradrenergic neurons originating in the brain stem. The present study aims to determine the role of noradrenergic receptors in the BNST in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Ovariectomized (OVX) or estrogen-primed OVX (OVX+E2) rats received three 1-h-interval injections of 0.05 micromol of noradrenaline (NA), phenylephrine (alpha1-adrenergic receptor agonist), clonidine (alpha2-agonist), or isoproterenol (beta-agonist) into the BNST. Injection of NA or alpha1-adrenergic agonist into the BNST strongly suppressed pulsatile LH secretion in OVX+E2 rats with a significant (P < 0.05) decrease in the mean LH level for 3 h and LH pulse frequency, but alpha2-and beta-agonists did not affect any of the LH pulse parameters. In OVX animals, alpha1- and alpha2-adrenergic agonists caused a significant change in LH pulse frequency and amplitude, respectively, though the effect was not as apparent as the NA- or alpha1-agonist-induced changes in OVX+E2 animals. These results indicate that NA inputs to the BNST suppress pulsatile LH secretion via alpha1-adrenergic receptors and that estrogen enhances this suppression.  相似文献   

12.
13.
Contents The relationship of neuropeptide Y (NPY), galanin (GAL), β-endorphin (β-END) and vasoactive intestinal peptide (VIP) to GnRH neurons were determined during the estradiol-induced LH surge. In experiment 1, 16 ovariectomized (OVX) gilts received 15 μg estradiol benzoate (EB)/kg BW at 0800 h and were slaughtered at either 24 h (n = 5), 48 h (n = 6) or 72 h (n = 5) later and five were injected with corn oil vehicle (0 h controls). Concentrations of neuropeptides were determined in tissue extracts by RIA. In experiment 2, nine OVX gilts were injected with EB as in experiment 1 and killed at either 24, 48 or 72 h (n = 3) later and three were not injected with EB (0 h controls). Frozen sections were processed to localize neuropeptides. In experiment 1, all measured neuropeptides were highest in pituitary stalk median eminence (SME). The GnRH concentration was not different at any time point in medial basal hypothalamus (MBH), preoptic area (POA) or SME. The NPY content in MBH was lower at 24, 48 and 72 h after EB than at 0 h (p < 0.001), and lower in SME at 48 and 72 h than at 24 h (p < 0.05) and 0 h (p < 0.01), respectively. Concentration of GAL in SME was four times higher at 72 h than at 0, 24 or 48 h (p < 0.001). The VIP concentration increased in POA (p < 0.05) and MBH (p < 0.001) at 24 h and 72 h (p < 0.05). Concentration of VIP in SME was lower at 24 and 48 h than at 0 h (p < 0.05) and increased to more than twice (p < 0.05) by 72 h. Concentrations of β-END were not different at any time point in POA and MBH but the highest content of β-END in SME occurred at 24 h (p < 0.001). In experiment 2 a moderate number of GnRH-immunoreactive (IR) fibres were found in the periventricular area of the POA and in organum vasculosum of the laminae terminalis (OVLT). The GnRH-IR fibres formed networks in the external and internal layer of the median eminence (ME). At 24 h, GnRH-IR neurons and fibres in the POA and ME were more numerous and noticeable differences were found in the arcuate nucleus (ARC) and ventromedial nucleus (NVM). At 48 and 72 h, numbers of IR neurons and fibres were higher in the ARC and NVM, but no changes occurred in the POA and ME. The ARC contained a moderate number of NPY-IR fibres, but less numerous small cell bodies. Only a few NPY-IR perikarya and fibres were in the NVM and fibre density was similar at all times after EB injection. VIP-IR fibres were scarcely distributed mostly in the posterior POA and the internal layer of ME. The number of VIP-IR fibres was similar at all time points and regions. A moderate number of varicose β-END fibres supplied the POA, and they were especially dense near the OVLT, but the cell bodies were moderate in number and did not show strong immunoreactivity. In ME, ARC and NVM, the number of β-END immunoreactive structures was greater at 24 and 48 h than at 0 h. The number of β-END-IR nerve fibres in POA was higher at 72 h than at 0 h. Levels of all neuropeptides studied were similar in the POA and MBH and content of NPY, GAL and β-END was very high in the SME of the pig forebrain. The dynamic changes of NPY, GAL, VIP and β-END content in pig hypothalamus during the oestrogen-induced negative and positive feedback phases of LH secretion indicate their potential role in modulating GnRH release from the median eminence.  相似文献   

14.
The aim of the present study was to examine the messenger RNA expressions of the endothelin and angiotensin systems during the periovulatory phase in gonadotrophin releasing hormone (GnRH)-treated cows. Ovaries were collected by transvaginal ovariectomy (n=5 cows/group), and the follicles (n=5, one follicle/cow) were classified into the following groups: before GnRH administration (control, before LH surge), 3-5 h after GnRH (during LH surge), 10 h after GnRH; 20 h after GnRH, 25 h after GnRH (peri-ovulation), and early corpus luteum (CL) (Days 2-3). Expression of mRNA was investigated using quantitative real-time PCR. The expression of angiotensin converting enzyme (ACE) mRNA significantly decreased immediately after onset of the LH surge and remained at low levels. The levels of angiotensin II receptor type 1 (AT1R) and type 2 (AT2R) expression during the periovulatory period significantly decreased compared with other periods. The concentration of angiotensin II in follicular fluid began to increase 10 h after GnRH treatment and further increased as ovulation approached. The level of ET-1 mRNA significantly decreased 10 h after GnRH treatment compared with the levels before GnRH treatment and those of the early CL period. The expression of ETR-A and ETR-B mRNA during the periovulatory period were lower than in other periods. The expression of ECE-1 mRNA began to decrease in the LH surge period and significantly decrease in the periovulatory period compared with other periods. These results suggest that the vasoactive peptides angiotensin and endothelin may be associated with final maturation of follicles.  相似文献   

15.
We tested the hypothesis that continuous infusion of native GnRH into mares during the estrous cycle, at a dose of 100 μg/h, would elevate circulating concentrations of LH without disrupting the endogenous, episodic pattern of LH release. Ten cyclic mares were assigned to one of two groups (n = 5/group): (1) Control (saline) and (2) GnRH in saline (100 μg/h). On experimental day 0 (3 to 6 d after ovulation), osmotic pumps containing saline or GnRH were placed subcutaneously and connected to a jugular infusion catheter. Blood samples were collected from jugular catheters daily and at 5-min intervals from catheters placed in the intercavernous sinus (ICS) for 8 h on experimental day 4 (luteal phase; 7 to 10 d after ovulation), followed by an additional 6-h intensive sampling period 36 h after PGF(2α)-induced luteal regression (experimental day 6; follicular phase). Treatment with GnRH increased (P < 0.001) concentrations of LH by 3- to 4-fold in the peripheral circulation and 4- to 5-fold in the ICS. Continuous GnRH treatment accelerated (P < 0.01) the frequency of LH release and decreased the interepisodic interval during both luteal and follicular phases. Treatment with GnRH during the luteal phase eliminated the low-frequency, long-duration pattern of episodic LH release and converted it to a high-frequency, short-duration pattern reminiscent of the follicular phase. These observations appear to be unique to the horse. Further studies that exploit this experimental model are likely to reveal novel mechanisms regulating the control of gonadotrope function in this species.  相似文献   

16.
The goal of this study was to determine the effects of short-term feed withdrawal on reproductive and metabolic hormones during the luteal phase of the estrous cycle in mature ewes. Mature ewes observed in estrus were assigned randomly to control and fasted groups (n = 10 per group Trials 1 and 2). For Trials 1 and 2, control ewes had ad libitum access to feed, whereas fasted ewes were not fed from d 7 through 11 of their estrous cycle; on d 12, all ewes were treated with 10 mg of PGF2alpha, and fasted ewes were gvien ad libitum access to feed. For Trial 1, blood samples were collected daily through fasting and at 2-h intervals following PGF2alpha for 72 h. Serum concentrations of insulin (P < or = 0.002) and IGF-I (P < or = 0.01), but not GH (P > or = 0.60), were decreased during fasting compared with fed ewes. Serum concentrations of 29 (P = 0.02) and 34 kDa (P = 0.04) IGFBP were greater in fasted ewes at 96 h after initiation of fasting than in control ewes. Two control and four fasted ewes in Trial 1 did not exhibit a preovulatory surge release of LH by 72 h. Therefore, Trial 2 was conducted so that the timing of the LH surge could be predicted following the collection of blood samples at 2-h intervals for 112 h and then at 6-h intervals until 178 h following PGF2alpha administration and realimentation. The magnitude of the preovulatory LH surge in Trial 2 was decreased (P = 0.009) and delayed (P = 0.04), and serum concentrations of estradiol were diminished (P < or = 0.03) 12 h before the LH surge in fasted ewes. Ovulation rates were not influenced (P > or = 0.32) by fasting in Trials 1 and 2. Serum concentrations of progesterone in both Trials 1 and 2 were, however, greater (P < 0.001) in fasted than in control ewes. A third trial with ovariectomized ewes was conducted to determine whether the increased serum concentrations of progesterone observed in fasted ewes during Trials 1 and 2 were ovarian-derived. Ovariectomized ewes were implanted with progesterone-containing intravaginal implants and allotted to control (n = 5) or fasted (n = 5) treatment groups and fed as described for Trials 1 and 2. Similar to intact ewes, serum concentrations of progesterone were approximately twofold greater (P < 0.001) in fasted than in control implanted ovariectomized ewes. In summary, feed withdrawal for 5 d during the luteal phase of the estrous cycle increased serum concentrations of progesterone and evoked endocrine changes that could perturb the subsequent estrous cycle.  相似文献   

17.
Ewes were treated with a luteolytic agent on Day 14 of the estrous cycle. Their largest follicle was identified 30 hr later. Thirty-six hr post-treatment, ewes received an injection of an analog of luteinizing hormone-releasing hormone (LHRHa). The peak in the induced surge of LH occurred 2 to 4 hr after injection of LHRHa. Ovulation occurred from the largest follicle approximately 24 hr following administration of LHRHa. During the subsequent luteal phase, serum concentrations of progesterone were normal. The treatment regimen described is well-suited for collection of follicles at precisely-timed periovulatory intervals. Perhaps information gained by using this model will be useful in ultimately understanding the follicular events associated with ovulation and function of the corpus luteum.  相似文献   

18.
The aims of this study were to evaluate the chronology of periovulatory events (oestrus behaviour, LH surge and ovulation) in 16 superovulated Manchega sheep and to determine whether follicular status at start of the FSH supply might affect their occurrence. Mean timing for onset of oestrus behaviour was detected at 28.1 +/- 0.7 h after sponge withdrawal; the preovulatory LH surge and ovulation started at 37.2 +/- 0.7 h and 65.4 +/- 0.7 h after progestagen withdrawal, respectively. The intervals between oestrus, LH surge and ovulation were affected by a high individual variability, which might be the cause for reported decreased efficiency in embryo production. Current results also addressed the role of follicular status at start of the superovulatory treatment on the preovulatory LH surge and the ovulation. The interval LH surge-ovulation was increased in ewes with a growing dominant follicle at starting the FSH treatment (32.3 +/- 0.9 vs 28.6 +/- 0.5 h, p < 0.05). The developmental stage of the largest follicle at starting the superovulatory treatment also affected occurrence of LH surge and ovulation; follicles in growing phase advanced the occurrence of the LH surge and ovulation when compared to decreasing follicles (33.0 +/- 1.0 vs 43.5 +/- 1.1 h, p < 0.05, for LH peak and 60.7 +/- 1.1 vs 72.8 +/- 1.2 h, p < 0.05, for ovulation). Thus, only ewes with growing follicles ovulated prior to 55 h after sponge withdrawal; conversely, no sheep with decreasing follicles ovulated earlier than 67 h, when an 85.7% of the ewes bearing growing follicles has ovulated at 63 h.  相似文献   

19.
Infusion of leptin during the ovine follicular phase has been shown to increase progesterone secretion during the subsequent luteal phase. In this study, we have assessed the effects of infusing leptin during the early luteal phase. Infusion of leptin (2.5 microg/h) into the ovarian artery of ewes with ovarian autotransplants (n=5) on day 3 of the luteal phase for 12h did not affect progesterone estradiol or LH concentrations compared to control ewes (n=5). These results suggest no direct effect of leptin on ovarian function at this stage of the estrous cycle.  相似文献   

20.
To test for the re‐establishment of the positive feedback of oestradiol (E2) during anoestrus in the dog, the hypothalamo–pituitary–ovarian axis of five beagle bitches was challenged by treatments with oestradiol benzoate (EB), mimicking the course of the pro‐oestric E2 secretion. Treatments in anoestrus started 7 days following the decline of progesterone (P) <1 ng/ml; they were repeated in 5 week intervals until onset of pro‐oestrus; another treatment was performed during dioestrus 50 days after onset of the preceding pro‐oestric bleeding. Each dog served as its own control by receiving vehicle‐treatments in one of the following cycles. Each observation period covered a time window of 168 h and blood samples were collected for the determination of luteinizing hormone (LH), follicle‐stimulating hormone (FSH) and E2 in 6 (0–24 h) and 8 h (24–168 h) intervals. In the control periods and as indicated by the parameters area under curve (AUC), basal and maximal values, the availability of LH, FSH and E2 decreased from dioestrus to early anoestrus to increase again during the course of anoestrus (p < 0.05), indicating a gradual desensitization of the hypothalamus towards the negative feedback of oestradiol. At all times treatments with EB lowered the availability of FSH (decreased AUC and basal levels). A delay in the occurrence of the first LH peak after treatments with EB (p < 0.001) and decreased maximal values (p < 0.001) indicated a suppression of the LH‐release. In no case treatment with EB led to a pre‐ovulatory like LH‐surge. In each dog the last trial with EB in anoestrus passed over into pro‐oestrus/oestrus, with a reduced AUC and peak value of the pre‐ovulatory LH‐surge being the only differences to the control group. The observed differences in the response of LH and FSH to treatments with EB point towards subtle differences in the mechanisms controlling the release of these two hormones during anoestrus. From the data obtained, it may be concluded that the time window for E2 to act via a positive feedback seems to be very small and restricted to the end of anoestrus, and that full follicular function is a pre‐requisite to allow for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号