首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The kinetics of sulphamethoxazole (SMZ) in plasma and milk, and its metabolism, protein binding and renal clearance were studied in three newborn calves and two dairy cows after intravenous administration. SMZ was predominantly acetylated; no hydroxy and glucuronide derivatives could be detected in plasma and urine. Age-dependent pharmacokinetics and metabolism of SMZ were observed. The plasma concentration-time curves of the N4-acetyl metabolite in the elimination phase were parallel to those of the parent drug; the N4-acetyl metabolite plasma percentage depended on age and ranged between 100% (new-born) to 24.5% (cow). SMZ was rapidly eliminated (elimination half-lives: 2.0-4.7 h) and exhibited a relatively small distribution volume (VDarea: 0.44-0.57 l/kg). SMZ was excreted predominantly by glomerular filtration, while its N4-acetyl metabolite was actively eliminated by tubular secretion.  相似文献   

2.
Summary

An intravenous low dosage of sulphanilamide (SAA) (14.0 mg/kg) to 6 pre‐ruminant calves revealed a biphasic SAA plasma disposition with a mean elimination half‐life of 4.1 h. The main metabolite in plasma was N4‐acetylsulphanilamide (N4), which 4 hours after injection exceeded the parent SAA plasma concentration. Urinary recovery of SAA was 10 to 16% of the dose; of N4, it was at least 69%. Traces of the N1‐acetyl (N1) metabolite and the doubly acetylated derivative (N1N4) were present in urine. The renal clearances of the N1 and N4 metabolites showed a tubular secretion pattern, which was at least 2 to 6 times higher than that of SAA.

A single high oral SAA dose of 200 mg/kg to 3 dairy cows resulted in extensive metabolism of SAA into N4 N1, and N1N4 metabolites; their mean maximum plasma concentrations were 64, 48, 0.72 and 24 μg/ml, respectively. The mean disposition half‐life of SAA in plasma and milk was 10 h. In milk the metabolite concentrations exceeded those in plasma; the N4 and N1N4 metabolite concentrations in milk exceeded that of SAA. The mean maximum concentrations of SAA, N4, N1, and N1N4 in milk were 52, 89, 2.3, and 98 pg/ml. respectively. For SAA and its metabolites, the binding to plasma and milk proteins was determined. No glucuronide or sulphate conjugates of SAA and its acetyl metabolites could be found in plasma, milk, or urine.

Based on the sensitivity of the bioassay (0.2 μg SAA/ml), a withholding time of 5 days was suggested for milk following single oral SAA dosage of 200 mg/kg.  相似文献   

3.
Plasma disposition, metabolism, protein binding and renal clearance of sulphamethoxazole (SMZ) and trimethoprim (TMP) were studied in four pigs after intravenous administration at a dose of 40 and 8 mg/kg, respectively. SMZ and TMP were quickly eliminated (mean elimination half-lives: 2.7 and 2.4 h, respectively). SMZ was predominantly acetylated; no hydroxy and glucuronide derivates could be detected in plasma and urine. TMP was 0-demethylated into 4-hydroxytrimethoprim (M1) and 3-hydroxytrimethoprim (M4) metabolite and subsequently extensively glucuronidated. SMZ, TMP and its M1 metabolite were excreted predominantly by glomerular filtration, while N4-acetylsulphamethoxazole and glucuronide conjugates of the M1 and M4 metabolites of TMP were actively eliminated by tubular secretion. The proportional drug percentage being present in the urine as parent compound was 13.1% for TMP and 16.0% for SMZ. The glucuronide conjugates of the M1 and M4 metabolites formed the main part (81.5%) of urinary TMP excretion pattern.  相似文献   

4.
Summary

The disposition of sulphadimidine (SDM) and of its N4‐acetyl (N4‐SDM) and two hydroxyl metabolites, 6‐hydroxymethyl‐ (SCH2OH) and 5‐hydroxyasulphadimidine (SOH), was studied in plasma and milk of dairy cows following intramuscular or intravenous administration of sulphadimididine‐33.3% at doses of 10, 45, 50, and 100 mg/kg. The main metabolite in plasma as well as in milk was SCH2OH. The metabolite percentages, the final plasma elimination half‐lives, and the time of peak SDM concentrations in milk are presented for different dosages. The concentrations of SDM and its metabolites in milk ran parallel to those in plasma beyond4 hours p.i. The metabolite concentrations in plasma and milk were lower than those of the parent SDM. Sulphate and glucuronide metabolites could not be detected in milk.

At high doses (45 mg/kg or more) and SDM plasma concentrations exceeding 20 μg/ml, a capacity limited metabolism of SDM to SCH2OH was noticed, viz, asteady state concentration of SCH2OH and a biphasic elimination pattern for SDM and SCH,OH in plasma and milk.

The mean ultrafiltrate ratios of the milk to plasma concentrations with respect to SDM, SCH2OH, SOH, and N4‐SDM were: 0.69, 0.22, 020, and 0.63, respectively.

The total amount of SDM and its metabolites recovered from the milk after milking twice daily over the whole experimental time was less than 2% of the applied dose.

A bioassay method allowed of detecting qualitatively SDM concentrations exceeding 0.2 μg/ml in plasma or milk. Withholding times for edible tissues and milk are suggested.  相似文献   

5.
Summary

The effect of molecular structure on the drug disposition and protein binding in plasma, the urinary recovery, and the renal clearance of sulphamerazine (SMR), sulphadiazine (SDZ), and sulphadimidine (SDM) and their N4‐acetyl and hydroxy derivatives were studied in pigs. Following IV administration of SDM, SMR and SDZ, their mean elimination half‐lives were 12.4 h, 4.3 h and 4.9 h respectively. The plasma concentrations of parent sulphonamide were higher than those of the metabolites, and ran parallel. The acetylated derivatives were the main metabolites; traces of 6‐hydroxymethylsulphamerazine and 4‐hydroxysulphadiazine were detected in plasma.

The urine recovery data showed that in pigs acetylation is the major elimination pathway of SDM, SMR and SDZ; hydroxylation became more important in case of SMR (6‐hydroxymethyl and 4‐hydroxy derivatives) and SDZ (4‐hydroxy derivatives) than in SDM. In pigs methyl substitution of the pyrimidine side chain decreased the renal clearance of the parent drug and made the parent compound less accessible for hydroxylation. Acetylation and hydroxylation speeded up drug elimentation, because their renal clearance values were higher than those of the parent drug.  相似文献   

6.
Plasma disappearance curves of sulfadimidine (SDM) in calves show at high doses a pattern resembling that of capacity‐limited elimination. The half‐life of the first part of the elimination phase of SDM when administered at high doses ranged between 6.4 and 11.5 h, while that of the terminal end of the plasma concentration‐time curves was similar to that obtained at a low level application, ranging between 2.5 and 6.0 h.

The percentage of N4‐acetylsulfadimidine (N4‐SDM) in plasma was low, viz. 2.2 to 5.8% of the total sulfadimidine concentration measured. The acetylation‐deacetylation equilibrium was established within 3 h p.i. The N4‐SDM plasma concentration‐time curves were parallel to those of SDM beyond 3 h p.i. At high doses (66–235 mg/kg) the percentage of N4‐SDM was slightly higher than that found at the low dose level.

A small proportion of N4‐acetylsulfadimidine, injected as the parent compound, was deacetylated to SDM. The intrinsic elimination half‐life of N4‐SDM was 0.9 h. It may be concluded that ultra‐trace concentrations of N4‐SDM, left in edible tissues of ruminants at slaughter, have in case of negative sulfonamide‐sensitive bioassays no significance for the public health.  相似文献   

7.
Summary

The depletion of sulphadimidine(SDM) and its N4‐acetyl and hydroxy metabolites was studied in eggs laid by hens after administration of either a single or multiple oral dosages of 100 mg SDM/kg. During medication and until I day after the last dose, the SDM and its metabolite concentrations in the egg white exceeded those in the egg yolk and reflected the plasma levels. In the period starting 2 days after the (last) dosage, the SDM concentration in the yolk became higher than in the egg white, and the drug depletion curves ran parallel. The mean maximum amount of SDM found in the whole egg was 1500 μg after a single and 1280 pg after multiple dosage. In eggs, traces of the N4‐acetyl and 6‐methylhydroxy metabolites could be detected (mainly in the egg white), and their concentrations were approximately 40 times lower than those of the parent drug. A highly significant correlation (P< 0.005) was found between the development stage of the oöcyte at the time of (last) medication and the amount of SDM found in the egg that developed from it. A period of 7 or 8 days after the (last) dosage of 100 mg SDM/kg/day is required to obtain SDM levels below 0.1 μg/g egg.  相似文献   

8.
Plasma disposition and urinary recovery of sulfamethazine (SMZ), its N4-acetylated metabolite (N4AcSMZ), and 2 of its hydroxylated metabolites--5-hydroxysulfamethazine (5OHSMZ) and 6-hydroxymethylsulfamethazine (6CH2OHSMZ)--were determined in either sex of 4 animal species: rats, dwarf goats, rabbits, and cattle. Rats, rabbits, and dwarf goats had significant (P < 0.01) sex difference in SMZ plasma clearance. Male rats had higher plasma clearance than did female rats, and excreted higher amounts of the hydroxy metabolites and lower amounts of N4AcSMZ. The N4AcSMZ metabolite was predominant in plasma and urine of rabbits. Male rabbits had higher plasma clearance than did female rabbits, but differences in metabolite profile were not apparent. With regard to plasma SMZ elimination, the situation in goats was opposite to that in rats. Male goats had considerably lower clearance than did female goats. This was associated with a lower hydroxylation rat in males. Plasma half-life of SMZ in cows was lower than that in bulls, probably because of a smaller distribution volume in cows. Compared with elimination via urine, elimination via milk was negligible in cows. Significant differences in metabolite profiles were not found between bulls and cows. Similar to those in rats and mice, hormone-dependent xenobiotic metabolic pathways may exist in other species. Depending on species and xenobiotic compound residue concentrations of xenobiotics, their metabolites, or both may differ with sex of the animal, or may be altered after treatment with anabolic hormones.  相似文献   

9.
Plasma disposition, protein binding, urinary recovery, and renal clearance of sulfamethazine (SMZ), sulfamerazine (SMR), and sulfadiazine (SDZ) and their N4-acetyl and hydroxy derivatives were studied in 4 horses in a crossover trial. The plasma concentration-time curves of the metabolites paralleled those of the parent drug in the elimination phase. Sulfamethazine and SMR were extensively metabolized. In plasma and urine, the main metabolite of the 3 sulfonamides tested was the 5-hydroxypyrimidine derivative, which was highly glucuronidated. Difference in elimination half-life of SMZ, SMR, and SDZ could be related to difference in metabolism and renal clearance values. Metabolism speeds drug elimination, producing compounds with higher renal clearance values than those of the parent drug. Methyl substitution in the pyrimidine side chain increased hydroxylation of the parent drug, but prolonged the persistence of the sulfonamides studied in the body. The high concentration of N4-acetyl and hydroxy metabolites of SMZ and SMR in plasma and urine decreased the potential antibacterial activity of the parent drugs. Sulfadiazine was less metabolized, and microbiologically determined SDZ concentrations in plasma and urine were slightly lower than those measured by high-performance liquid chromatography.  相似文献   

10.
Summary

Pharmacokinetics and tissue distribution experiments were conducted in pigs to which sulphadimidine (SDM) was administered intravenously, orally, and intramuscularly at a dosage of 20 mg SDM/kg. SDM was acetylated extensively, but neither hydroxy metabolites nor their derivatives could be detected in plasma, edible tissues or urine. Following i.v. and two oral routes of administration, the N4‐acetylsulphadimidine (N4‐SDM) concentration‐time curve runs parallel to that of SDM. The percentage of N4‐SDM in plasma was in the range between 7 and 13.5% of the total sulphonamide concentration. The bioavailability of SDM administered in a drench was 88.9 ± 5.4 % and administered mixed with pelleted feed for 3 consecutive days it was 48.0 ± 11.5 %. The renal clearance of unbound SDM, which was urine flow related, was 1/7 of that of creatinine, indicating reabsorption of the parent drug. The unbound N4SDM was eliminated three times faster than creatinine, indicating that tubular secretion was the predominant mechanism of excretion.

After i.v. administration, 51.9 % of the administered dose was recovered in urine within 72 h p.i., one quarter of which as SDM and three quarters as N4‐SDM.

Tissue distribution data obtained at 26, 74, 168, and 218 h after i.m. injection revealed that the highest SDM concentration was found in plasma. The SDM concentration in muscle, liver, and kidney ranged from one third to one fifth of that in plasma. The N4‐SDM formed a minor part of the sulphonamide content in edible tissues, in which the SDM as well as the N4‐SDM concentration parallelled the plasma concentrations.

Negative results obtained with a semi‐quantitative bioassay method, based on monitoring of urine or plasma, revealed that the SDM concentration levels in edible tissues were in that case below 0. 1μ/g tissue.  相似文献   

11.
12.
Summary

The influence of temperature (10° C and 20° C) on pharmacokinetics and metabolism of sulphadimidine (SDM) in carp and trout was studied.

At 20° C a significantly lower level of distribution (Vdarea ) and a significantly shorter elimination half‐life (T (½>) β) was achieved in both species compared to the 10° C level. In carp the body clearance parameter (ClB (SDM) was significantly higher at 20° C compared to the value at 10° C, whereas for trout this parameter was in the same order of magnitude for both temperatures.

N4‐acetylsulphadimidine (N4‐SDM) was the main metabolite of SDM in both species at the two temperature levels. The relative N4‐SDM plasma percentage in carp was significantly higher at 20° C than at 10° C, whereas there was in trout no significant difference.

In neither species was the peak plasma concentration of N4‐SDM (CmaxN4‐SDM)) significantly different at two temperatures.

The corresponding peak time of this metabolite (Tmax (N4‐SDM)) was significantly shorter at 20° C compared to 10° C in both carp and trout.

In carp at both temperatures, acetylation occurs to a greater extent than hydroxylation. Only the 6‐hydroxymethyl‐metabolite (SCH2OH) was detected in carp, at a significant different level at the two temperatures. Concentrations of hydroxy metabolites in trout were at the detection level of the HPLC‐method (0.02‐μg/ml). The glucuronide metabolite (SOH‐gluc.) was not detected in either species at the two temperatures.  相似文献   

13.
Plasma disposition, protein binding, urinary recovery, and renal clearance of sulfamethazine (SMZ), its N4-acetylsulfamethazine (N4-SMZ), and its 2 hydroxy metabolites--6-hydroxymethylsulfamethazine (SCH2OH) and 5-hydroxysulfamethazine (SOL)--and the glucuronide of the latter were studied in 7 cows and 7 calves to determine the relationship between these values and the age of the animal and dosage applied. A capacity-limited hydroxylation of SMZ into SCH2OH was observed in cows and calves given dosages of 100 to 200 mg/kg. A biphasic SMZ elimination curve and steady state in SCH2OH plasma concentration (6 to 15 micrograms/ml) were observed. The N4-SMZ plasma concentration-time curve was parallel to that of SMZ at the dosages and in all animals. The total body clearance and the cumulative urinary recovery (expressed as percentage of the dose) for SMZ and its metabolites depended on drug dosage and age of the animals. At dosages of SMZ less than 25 mg/kg, the main metabolite in the urine of calves and cows was SCH2OH (23% to 55.2%), whereas in calves given a larger dosage (100 mg/kg), the N4-SMZ and SOH percentages increased. The plasma protein binding of SMZ and its metabolites depended on the SMZ plasma concentration. Hydroxylation lowered the protein binding (from 75-80%) to 50%. The renal clearance of SMZ was dependent on urine flow in all animals. The renal clearance of the SCH2OH metabolite was 2 to 3 times greater than the creatinine clearance value; thus, this compound was excreted by glomerular filtration and partly by tubular secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
ObjectiveTo describe the pharmacokinetics and selected pharmacodynamic variables of codeine and its metabolites in Thoroughbred horses following a single oral administration.Study designProspective experimental study.AnimalsA total of 12 Thoroughbred horses, nine geldings and three mares, aged 4–8 years.MethodsHorses were administered codeine (0.6 mg kg–1) orally and blood was collected before administration and at various times until 120 hours post administration. Plasma and urine samples were collected and analyzed for codeine and its metabolites by liquid chromatography–mass spectrometry, and plasma pharmacokinetics were determined. Heart rate and rhythm, step counts, packed cell volume and total plasma protein were measured before and 4 hours after administration.ResultsCodeine was rapidly converted to the metabolites norcodeine, codeine-6-glucuronide (C6G), morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). Plasma codeine concentrations were best represented using a two-compartment model. The Cmax, tmax and elimination t½ were 270.7 ± 136.0 ng mL–1, 0.438 ± 0.156 hours and 2.00 ± 0.534 hours, respectively. M3G was the main metabolite detected (Cmax 492.7 ± 35.5 ng mL–1), followed by C6G (Cmax 96.1 ± 33.8 ng mL–1) and M6G (Cmax 22.3 ± 4.96 ng mL–1). Morphine and norcodeine were the least abundant metabolites with Cmax of 3.17 ± 0.95 and 1.42 ± 0.79 ng mL–1, respectively. No significant adverse or excitatory effects were observed.Conclusions and clinical relevanceFollowing oral administration, codeine is rapidly metabolized to morphine, M3G, M6G, C6G and norcodeine in horses. Plasma concentrations of M6G, a presumed active metabolite of morphine, were comparable to concentrations reported previously following administration of an analgesic dose of morphine to horses. Codeine was well tolerated based on pharmacodynamic variables and behavioral observations.  相似文献   

15.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) dose of 10 mg/kg body weight (b.w.) in snakehead fish at 24–26 °C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. The plasma concentration–time data were described by an open two‐compartment model for both routes. After intravenous administration, the elimination half‐life (T1/2β), area under the concentration–time curve (AUC) and total body clearance of EF were 19.82 h, 75.79 μg h/mL and 0.13 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (Cmax), T1/2β and AUC of EF were 1.86 μg/mL, 35.8 h and 49.98 μg h/mL, respectively. Absorption of EF was good with a bioavailability (F) of 65.82%, which was higher than that calculated in most seawater fish. CF, an active metabolite of EF, was detected occasionally in this study, which indicates a low extent of deethylation of EF in snakehead fish.  相似文献   

16.
Pimobendan is an inodilator used in the treatment of canine congestive heart failure (CHF). The aim of this study was to investigate the pharmacokinetics and cardiovascular effects of a nonaqueous oral solution of pimobendan using a single‐dose, operator‐blinded, parallel‐dose study design. Eight healthy dogs were divided into two treatment groups consisting of water (negative control) and pimobendan solution. Plasma samples and noninvasive measures of cardiovascular function were obtained over a 24‐h period following dosing. Pimobendan and its active metabolite were quantified using an ultra‐high‐performance liquid chromatography–mass spectrometer (UHPLC‐MS) assay. The oral pimobendan solution was rapidly absorbed [time taken to reach maximum concentration (Tmax) 1.1 h] and readily converted to the active metabolite (metabolite Tmax 1.3 h). The elimination half‐life was short for both pimobendan and its active metabolite (0.9 and 1.6 h, respectively). Maximal cardiovascular effects occurred at 2–4 h after a single oral dose, with measurable effects occurring primarily in echocardiographic indices of systolic function. Significant effects persisted for <8 h. The pimobendan nonaqueous oral solution was well tolerated by study dogs.  相似文献   

17.
ObjectiveTo evaluate the pharmacokinetics of amitriptyline and its active metabolite nortriptyline after intravenous (IV) and oral amitriptyline administration in healthy dogs.Study designProspective randomized experiment.AnimalsFive healthy Greyhound dogs (three males and two females) aged 2–4 years and weighing 32.5–39.7 kg.MethodsAfter jugular vein catheterization, dogs were administered a single oral or IV dose of amitriptyline (4 mg kg−1). Blood samples were collected at predetermined time points from baseline (0 hours) to 32 hours after administration and plasma concentrations of amitriptyline and nortriptyline were measured by liquid chromatography triple quadrupole mass spectrometry. Non-compartmental pharmacokinetic analyses were performed.ResultsOrally administered amitriptyline was well tolerated, but adverse effects were noted after IV administration. The mean maximum plasma concentration (CMAX) of amitriptyline was 27.4 ng mL−1 at 1 hour and its mean terminal half-life was 4.33 hours following oral amitriptyline. Bioavailability of oral amitriptyline was 6%. The mean CMAX of nortriptyline was 14.4 ng mL−1 at 2.05 hours and its mean terminal half-life was 6.20 hours following oral amitriptyline.Conclusions and clinical relevanceAmitriptyline at 4 mg kg−1 administered orally produced low amitriptyline and nortriptyline plasma concentrations. This brings into question whether the currently recommended oral dose of amitriptyline (1–4 mg kg−1) is appropriate in dogs.  相似文献   

18.
Oxyglobin (OXY) is a hemoglobin‐based oxygen carrier (HBOC) made of glutaraldehyde‐polymerized bovine hemoglobin (bHb). Products similar to OXY are under development for use as temporary blood substitutes in trauma, shock and anemia. Since they all may increase blood O2‐carrying capacity and thus, possibly tissue oxygenation, they may also be used to enhance performance of both equine and human athletes. That is why HBOCs are banned from use in athletic competition. Our goal was to determine the pharmacokinetics of OXY after intravenous (IV) infusion to horses. Blood and urine samples were collected from adult horses that received an IV dose of 32.5 g of OXY. Concentrations of OXY in plasma and urine were quantified using a newly developed LC/Q‐TOF‐MS/MS detection technique. Level of quantification (LOQ) was 50 μg mL–1. The decline of the plasma concentration‐time curve of the HBOC was described by a 2‐compartment model (C1 and C2). The median distribution alpha (t1/2k1,0) and elimination beta (t1/2k2,0) half‐lives were 1.3 and 12.0 hours, respectively. The bHb molecules in OXY are not of uniform size and vary substantially in molecular weight (MW). Of the OXY molecules 53% were eliminated in C1, which represented the smaller MW molecules and 47% in C2, which represented the larger MW bHb. The maximal 0‐time plasma concentration was 662.0 μg/mL and declined to 97.1 μg mL–1 at 24 h. The area below the plasma concentration‐time curve was 5143 μg h–1 mL–1. The volumes of C1 and C2 were 86.9 and 63.9 mL kg–1, respectively. Oxyglobin was not detected in urine. This study shows the detection and quantification in equine plasma of a HBOC following IV infusion and demonstrates the short half‐life of about 50% of infused bHb molecules.  相似文献   

19.
Summary

Hydroxylated metabolites of sulphadimidine, sulphamerazine, sulphatroxazole, sulphamethoxazole, and sulphadiazine exhibited antimicrobial activity against Escheria coli 28 PR 271 test strain ranging from 2.5 to 39.5 per cent of that of the parent drug. Trimethoprim addition potentiated the antimicrobial activity of these metabolites. N4‐acetyl sulphonamide metabolites possessed no antimicrobial activity, nor did trimethoprim potentiated them.  相似文献   

20.
Compartmental models were used to investigate the pharmacokinetics of intravenous (i.v. ), oral (p.o. ), and topical (TOP ) administration of dimethyl sulfoxide (DMSO ). The plasma concentration–time curve following a 15‐min i.v. infusion of DMSO was described by a two‐compartment model. Median and range of alpha (t 1/2α) and beta (t 1/2β) half‐lives were 0.029 (0.026–0.093) and 14.1 (6.6–16.4) hr, respectively. Plasma concentration–time curves of DMSO following p.o. and TOP administration were best described by one‐compartment absorption and elimination models. Following the p.o. administration, median absorption (t 1/2ab) and elimination (t 1/2e) half‐lives were 0.15 (0.01–0.77) and 15.5 (8.5–25.2) hr, respectively. The plasma concentrations of DMSO were 47.4–129.9 μg/ml, occurring between 15 min and 4 hr. The fractional absorption (F ) during a 24‐hr period was 47.4 (22.7–98.1)%. Following TOP administrations, the median t 1/2ab and t 1/2e were 1.2 (0.49–2.3) and 4.5 (2.1–11.0) hr, respectively. Plasma concentrations were 1.2–8.2 μg/ml occurring at 2–4 hr. Fractional absorption following TOP administration was 0.48 (0.315–4.4)% of the dose administered. Clearance (Cl) of DMSO following the i.v. administration was 3.2 (2.2–6.7) ml hr?1 kg?1. The corrected clearances (ClF ) for p.o. and TOP administrations were 2.9 (1.1–5.5) and 4.5 (0.52–18.2) ml hr?1 kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号