首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A standardized test was developed to compare the efficacy of Aujeszky's disease virus (ADV) vaccines under laboratory conditions. Per test 3 groups of 6 to 8 sero-negative pigs were used. The first vaccination was done at 10 weeks of age. One group was vaccinated once, another was vaccinated twice and the 3rd served as control. Pigs were challenge exposed to the virulent NIA-3 strain of ADV 12 weeks after the first vaccination. Apart from mortality, average periods of growth arrest, fever and virus shedding after challenge were used as parameters to evaluate vaccine efficacy. Two inactivated and 4 attenuated vaccines were tested. Two attenuated vaccine viruses were excreted after vaccination. Despite maximal standardization, a considerable variation still existed between the experiments in mortality and growth arrest periods of control pigs after challenge. However, the controls were always more severely affected than the vaccinated pigs. All vaccines except one were effective in preventing death after challenge, but none conferred complete protection. Most vaccinated pigs still lost weight, developed fever and shed virus after challenge. Revaccination after 3 or 4 weeks had little effect, particularly with the attenuated vaccines. The results of the present study indicate that 2 of the attenuated vaccines conferred the best protection, 1 attenuated vaccine appeared to be as effective as the 2 inactivated ones, and the 4th attenuated vaccine was least effective.  相似文献   

2.
Ten-week-old pigs with high levels of maternally derived antibody (MDA) against Aujeszky's disease virus (ADV) were given either a single intranasal vaccination or one or two doses (with an interval of three weeks) of commercially available attenuated ADV vaccines intramuscularly. The pigs did not produce a clear neutralising antibody response to ADV. However, pigs vaccinated intranasally and pigs given two doses of attenuated ADV vaccines were protected against intranasal challenge with virulent ADV two months after the first vaccination. Pigs given one parenteral dose of attenuated ADV vaccine were insufficiently protected. Protection was shown by shorter periods of growth arrest and fever and a greater reduction of virulent virus shedding after challenge in vaccinated pigs than in unvaccinated control pigs. Although intranasal vaccination conferred protection comparable to two parenteral doses of attenuated vaccines, it reduced shedding of virulent virus much more effectively. These results, together with those of other studies, show that intranasal vaccination confers better protection against Aujeszky's disease in pigs with MDA than parenteral vaccination. However, the efficacy of intranasal vaccination also decreases with increasing levels of MDA at the time of vaccination.  相似文献   

3.
Intranasal (IN) vaccination of pigs with low levels of maternally-derived antibody (MDA) has previously been shown to confer good protection against challenge with virulent Aujeszky's disease virus (ADV). The objective of the present study was to determine the efficacy of IN vaccination with an attenuated ADV, in comparison with that of an inactivated vaccine given parenterally, in pigs with higher MDA titres at the time of vaccination. In one experiment, vaccinations were done at 6 weeks of age, and in another experiment pigs were vaccinated at 4 and/or 9 weeks of age. Two months after (the last) vaccination pigs were challenged intranasally with a virulent ADV. Protection was evaluated on the basis of mortality, periods of growth arrest, fever and virus shedding after challenge. The presence of MDA markedly depressed the serum-neutralizing antibody response after vaccination. Sensitisation occurred after parenteral vaccination with an inactivated vaccine despite high MDA levels. Although the intranasally-vaccinated pigs had lower levels of neutralizing antibody at the time of challenge, they were significantly better protected than pigs given 1 or 2 doses of the inactivated vaccine. Comparing the present results with those of a previous study, it appears that the efficacy of parenteral as well as intranasal ADV vaccination decreases with increasing levels of MDA at the time of vaccination.  相似文献   

4.
The purpose of the study was to evaluate the short- and long-term immunity after intranasal vaccination in pigs with maternally derived antibodies (MDA). In two experiments, 10-week-old pigs with moderate MDA titres against Aujeszky's disease virus (ADV) were vaccinated intranasally with the Bartha strain of ADV to evaluate the protective immunity conferred at 2 weeks, 2 months and 4 months after vaccination. Protection was evaluated on the basis of severity of clinical signs, periods of fever and growth arrest, and duration and amount of virus excreted after challenge with a virulent ADV. During the first 2-3 weeks after vaccination, antibodies to ADV continued to decline as in unvaccinated control pigs. After that, antibody titres stabilized or gradually increased. At 2 weeks, 2 months and 4 months after vaccination, vaccinated pigs were significantly better protected than unvaccinated controls. The vaccinated pigs challenged 2 weeks after vaccination hardly developed any sign of disease. Mild signs of Aujeszky's disease and a growth arrest period of 5 days were observed in vaccinated pigs challenged 2 months after vaccination, whereas vaccinated pigs challenged 4 months after vaccination developed severe signs of disease and a growth arrest period of 13 days. Vaccinated pigs challenged 2 weeks after vaccination did not excrete challenge virus, and pigs challenged 2 or 4 months after vaccination excreted far less virus than unvaccinated controls. The results demonstrate that intranasal ADV vaccination of pigs with moderate MDA titres protected them from 2 weeks to at least 4 months after vaccination. Immunity steadily declined, however, after vaccination.  相似文献   

5.
Intranasal vaccination with an attenuated Aujeszky's disease virus strain was compared with parenteral vaccination with two inactivated virus vaccines, in 10-week-old pigs with low levels of maternal antibody. Intranasal vaccination conferred a much better protection than parenteral vaccination with the two inactivated vaccines against challenge two months later, as evidenced by shorter periods of growth arrest and fever and a greater reduction of virulent virus shedding after challenge-exposure.  相似文献   

6.
The effects of challenge exposure on the humoral and cellular immune responses in pseudorabies vaccinated swine were studied in 84 barrows. The pigs were divided into seven groups and challenge exposed to a virulent strain of pseudorabies virus on months 1, 3, 5, 8, 10, 12 and 14 after vaccination. The pigs were vaccinated with commercial attenuated and inactivated pseudorabies virus vaccines. The protection conferred by vaccination was equally effective with both types of vaccines. The levels of cellular and humoral immunity after challenge exposure in pigs vaccinated with either type of vaccine were similar. The cell-mediated immune response can be effectively used for the early detection of pigs exposed to pseudorabies virus. Virus isolation attempts from the brain and spleen in most of the vaccinated pigs were unsuccessful.  相似文献   

7.
Several Aujeszky's disease virus (ADV) vaccination protocols of sows were evaluated with regard to the passive protection conferred on piglets in a recently built commercial farm. Three different groups of sows were vaccinated using a Bartha K-61 strain. One group received an inactivated vaccine during pregnancy and the other two groups received attenuated vaccines, either during pregnancy (day 65) or on the seventh day of lactation. At farrowing, sows vaccinated during lactation had lower seroneutralization titres than those vaccinated during pregnancy either with inactivated or attenuated vaccines. Accordingly, their piglets were the ones with lower levels of maternally transferred neutralizing antibodies. At 4 weeks of age, five piglets born of each group of sows were challenged intranasally with a neurotropic strain of ADV. Piglets born of sows vaccinated during pregnancy with inactivated and attenuated vaccines gained 1.50 kg bodyweight and 2.50 kg bodyweight during 7 days, respectively, and did not show clinical signs, while piglets from sows vaccinated during the previous lactation lost 0.60 kg and presented moderate to severe clinical signs of ADV. Vaccination of sows during pregnancy provided more protection against ADV for piglets than sow vaccination before mating. Piglets born from sows vaccinated with attenuated or inactivated vaccines did not present remarkable differences on protection.  相似文献   

8.
Different deleted Aujeszky's disease vaccines were compared for their ability to induce an immunity which suppresses virus excretion optimally upon infection. Groups of pigs were vaccinated once with attenuated deleted Aujeszky's disease vaccine (gI, gX or gp63 negative), suspended in phosphate buffered saline. Two additional groups were vaccinated with a gI deleted vaccine virus suspended in an oil-in-water emulsion. Other groups were vaccinated twice with gI deleted inactivated vaccines. The three control groups included were: pigs immune after infection, unvaccinated pigs and pigs receiving vaccine without known deletion in the envelope. Experimental challenge took place 3 or 4 weeks after the only or the last vaccination. The number of excreting pigs, the duration of excretion and the virus titers excreted, were determined for all the groups. All the pigs vaccinated with glycoprotein deletion vaccines suspended in phosphate buffered saline, excreted virus for 2 to 6 days after challenge. A 100 to 1000 fold reduction in excreted virus titers was obtained in vaccinated pigs compared to unvaccinated ones. Some vaccines suppressed virus excretion better than others, but no correlation could be made between the type of deletion (gI, gX or gp63) and the degree of reduction in virus excretion. Similar results were obtained with two applications of inactivated vaccines. The lowest number of excreting pigs, the lowest duration of excretion and the lowest titers were obtained in groups vaccinated with the attenuated vaccine suspended in an oil-in-water emulsion. No vaccine suppressed virus excretion totally.  相似文献   

9.
Intradermal vaccination with plasmid DNA encoding envelope glycoprotein C (gC) of pseudorabies virus (PrV) conferred protection of pigs against Aujeszky's disease when challenged with strain 75V19, but proved to be inadequate for protection against the highly virulent strain NIA-3. To improve the performance of the DNA vaccine, animals were vaccinated intradermally with a combination of plasmids expressing PrV glycoproteins gB, gC, gD, or gE under control of the major immediate-early promotor/enhancer of human cytomegalovirus. 12.5 microg per plasmid were used per immunization of 5-week old piglets which were injected three times at biweekly intervals. Five out of six animals survived a lethal challenge with strain NIA-3 without exhibiting central nervous signs, whereas all the control animals succumbed to the disease. This result shows the increased protection afforded by administration of the plasmid mixture over vaccination with a gC expressing plasmid alone. A comparative trial was performed using commercially available inactivated and modified-live vaccines and a mixture of plasmids expressing gB, gC, and gD. gE was omitted to conform with current eradication strategies based on gE-deleted vaccines. All six animals vaccinated with the live vaccine survived the lethal NIA-3 challenge without showing severe clinical signs. In contrast, five of six animals immunized with the inactivated vaccine died, as did two non-vaccinated controls. In this test, three of six animals vaccinated with the DNA vaccine survived without severe clinical signs, whereas three succumbed to the disease. Comparing weight reduction and virus excretion, the DNA vaccine also ranged between the inactivated and modified-live vaccines. Thus, administration of DNA constructs expressing different PrV glycoproteins was superior to an adjuvanted inactivated vaccine but less effective than an attenuated live vaccine in protection of pigs against PrV infection. Our data suggest a potential use of DNA vaccination in circumstances which do not allow administration of live attenuated vaccines.  相似文献   

10.
In this study, an intranasal immunization strategy was set up in maternally immune pigs in order to protect them not only clinically but also virologically. Two genetically engineered Aujeszky's disease virus (ADV) strains, Kaplan gE-gI- and Kaplan gE-gC-, were used for intranasal immunization. Both strains were safe for 4-week-old pigs. A single intranasal inoculation of 10(6.0) TCID50 of Kaplan gE-gI- and Kaplan gE-gC- at 4 weeks of age in the presence of moderate titres of maternally derived antibodies (SN titres: 12-16) reduced the amount of weight loss, fever and virus excretion upon challenge 6 weeks later. In a second experiment, the effect of an additional intramuscular booster with three different commercial vaccines (containing attenuated Bartha or NIA3-783 or inactivated Phylaxia; all suspended in an oil-in-water emulsion) at 10 weeks of age was evaluated. One month after the last intramuscular booster, between five and seven pigs from each group were selected for challenge. All intranasally/intramuscularly immunized pigs showed a significantly better clinical and virological protection after challenge than the single intranasally immunized pigs. In the double immunized group, the protection was better when Kaplan gE-gC- was used for the intranasal priming (only two of 14 pigs excreted virus with a duration of 4 days) than when Kaplan gE-gI- was used (13 of 18 pigs excreted virus with a duration ranging from 1 to 4 days). The virological protection was not influenced by the type of vaccine used for booster vaccination. Because the intranasal/intramuscular immunization approach is very compatible with current pig movements on farms and pigs with moderate levels of maternally derived antibodies can effectively be immunized, it can be considered as a good alternative to intramuscular/intramuscular vaccinations especially in regions with a high ADV prevalence.  相似文献   

11.
Evaluation in swine of a subunit vaccine against pseudorabies   总被引:2,自引:0,他引:2  
A subunit vaccine against pseudorabies virus (PRV) was prepared by treating a mixture of pelleted virions and infected cells with the nonionic detergent Nonidet P-40 and emulsifying the extracted proteins incomplete Freund's adjuvant. Three 7-week-old pigs without antibodies against PRV were given 2 IM doses of this vaccine 3 weeks apart. Thirty days after the 2nd vaccination, 10(6) median tissue culture infective doses (TCID50) of a virulent strain of PRV were administered intranasally. Tonsillar and nasal swabs were collected daily between 2 and 10 days after challenge exposure. The pigs vaccinated with the subunit vaccine were not found to shed virulent PRV. Two groups of five 7-week-old pigs vaccinated with commercially available vaccines, either live-modified or inactivated virus, and subsequently exposed to 10(6) TCID50 of virulent PRV, shed virulent virus for up to 8 days. The subunit vaccine induced significantly higher virus-neutralizing antibody titers than either the live-modified or inactivated virus vaccine.  相似文献   

12.
Inactivated and live Aujeszky's disease virus vaccines were administered intradermally using a special device without a needle. The 88 pigs were vaccinated at the beginning of the fattening period, both under experimental conditions and in commercial herds. All the pigs were challenged at the end of the fattening period in isolation units. The same vaccines were also injected intramuscularly. Vaccination by the intradermal route induced good protection, similar to that conferred with live virus vaccine injected intramuscularly. The inactivated virus vaccine was not as effective when it was injected by the intradermal route. In animals vaccinated intradermally, there were no local lesions in the meat, but very small nodules were found in the dermis; these do not affect carcass quality. The effects of challenge exposure depended on the initial health of the animals, and a synthetic value (delta G) was used to interpret the data. In fattening pigs, intradermal vaccination required less animal constraint than intramuscular injection; administration could be verified by the presence of a papule at the site of inoculation, and pigs could be vaccinated while they were feeding. Injection without a needle also helps avoid bacterial contamination under farm conditions.  相似文献   

13.
Four immunisation protocols based on inactivated and attenuated commercially available marker vaccines for bovine herpesvirus type 1 (BHV-1) were compared. The first group of calves were vaccinated with an attenuated vaccine administered intranasally and an inactivated vaccine injected subcutaneously, four weeks apart; the second group were vaccinated twice with the attenuated vaccine, first intranasally and then intramuscularly; the third group were vaccinated twice subcutaneously with the inactivated vaccine; and the fourth group were vaccinated twice intramuscularly with the attenuated vaccine. A control group of calves were not vaccinated. The cellular and humoral immune responses were highest in the two groups which received at least one injection of the inactivated vaccine. Virological protection was observed in all the vaccinated groups after a challenge infection and reactivation by treatment with dexamethasone, but the calves which received one dose of the inactivated vaccine as a booster or two doses of the inactivated vaccine excreted significantly less of the challenge virus than the calves which were vaccinated only with the attenuated preparation.  相似文献   

14.
Groups of pigs vaccinated with an inactivated bivalent vaccine containing porcine parvovirus (PPV) and pseudorabies virus (PRV) developed geometric mean titers (GMT) of humoral antibody for each of the viruses as high or slightly higher than those of other groups of pigs that were vaccinated with inactivated monovalent vaccines containing one or the other of the same viruses. An increase in GMT after challenge exposure of vaccinated pigs to live virus indicated that vaccination did not prevent virus replication. However, an indication that replication was less extensive in vaccinated pigs was provided by the following. Although neither vaccinated nor nonvaccinated (control) pigs had clinical signs after exposure to the live PPV, the effect of vaccination was evident by the fact that GMT were higher in nonvaccinated pigs after exposure than they were in vaccinated pigs. Conversely, all pigs exposed to live PRV had clinical signs, but these signs varied between mild-to-moderate and transient for vaccinated pigs to severe and fatal for nonvaccinated pigs.  相似文献   

15.
Two commercial marker vaccines against classical swine fever virus (CSFV) and companion diagnostic tests were examined in 160 conventional pigs. To test the vaccines in a "worst case scenario", group of 10 weaners were vaccinated using a single dose of an E2 (gp55) based vaccine at days -21, -14, -10 or -7, and subsequently challenged at day 0. The challenge virus was CSFV 277, originating from a recent outbreak of classical swine fever (CSF) in Germany. In all groups, only 5 out of 10 pigs were challenged; the remaining 5 pigs served as vaccinated contact controls. Also, three control groups, each consisting of 10 non-vaccinated pigs, were challenged in parallel to the vaccinated animals. CSFV could be isolated from all non-vaccinated pigs. Among these pigs 40% displayed a chronic course of the infection (virus positive for more than 10 days). Pigs vaccinated 21 or 14 days before challenge displayed no clinical signs of CSFV after challenge. However, they were still able to replicate CSFV when challenged, as measured by reisolation of CSFV from leukocytes of the directly challenged pigs. CSFV could be isolated from the leucocytes of 25% of the pigs vaccinated 21 days before challenge and 50% of the pigs vaccinated 14 days before challenge. Chronic infection was not observed, but transmission to one vaccinated contact pig occurred. From all pigs vaccinated 10 or 7 days before challenge, CSFV could be reisolated. We observed a chronic course of infection in 5% of pigs vaccinated 10 days before challenge and in 30% of pigs vaccinated 7 days before challenge. The mortality rate was 20% in the pigs vaccinated 10 days before challenge, and varied between 20 and 80% in pigs vaccinated 7 days prior to challenge. The contact animals had lower mortality (0-20%) than directly challenged pigs, probably mirroring the delayed time point of infection. There was thus some protection against clinical illness by both marker vaccines, but not a solid protection against infection and virus shedding. The efficacy of the vaccine was best if used 3 weeks before challenge and a clear correlation between time interval from vaccination to challenge and the level of virus shedding was observed. Each vaccine had its own accompanying discriminatory ELISA, but 18% of the virus positive pigs never seroconverted in these tests.  相似文献   

16.
At present, two types of vaccines against classical swine fever (CSF) virus are commercially available: E2 sub-unit marker vaccines and the conventional attenuated live C-strain vaccines. To evaluate the reduction of the horizontal virus transmission, three comparable experiments were carried out in which groups of weaner pigs (vaccinated with a marker vaccine or a C-strain vaccine) were challenged with CSF virus at 0, 7, and 14 days post-vaccination (dpv). Virus transmission was prevented totally when the challenge occurred at 14 dpv with an E2-marker vaccine (0/12 contact pigs positive in virus isolation (VI); R = 0 (0; 1.5)). At 7 dpv, transmission was reduced slightly (5/12 contact pigs positive in VI; R = 1.0 (0.3; 3.0)), whereas at 0 dpv, vaccination had no effect on transmission (10/12 contact pigs positive in VI; R = 2.9 (1.5; 10.8)). In the C-strain-vaccinated pigs, no virus transmission was detected even when the challenge was performed at the same day as the vaccination (0/12 contact pigs positive in VI; R = 0 (0; 1.5)).  相似文献   

17.
We compared the efficacy of 3 commercial vaccines against swine influenza A virus (SIV) and an experimental homologous vaccine in young pigs that were subsequently challenged with a variant H3N2 SIV, A/Swine/Colorado/00294/2004, selected from a repository of serologically and genetically characterized H3N2 SIV isolates obtained from recent cases of swine respiratory disease. The experimental vaccine was prepared from the challenge virus. Four groups of 8 pigs each were vaccinated intramuscularly at both 4 and 6 wk of age with commercial or homologous vaccine. Two weeks after the 2nd vaccination, those 32 pigs and 8 nonvaccinated pigs were inoculated with the challenge virus by the deep intranasal route. Another 4 pigs served as nonvaccinated, nonchallenged controls. The serum antibody responses differed markedly between groups. After the 1st vaccination, the recipients of the homologous vaccine had hemagglutination inhibition (HI) titers of 1:640 to 1:2560 against the challenge (homologous) virus. In contrast, even after 2nd vaccination, the commercial-vaccine recipients had low titers or no detectable antibody against the challenge (heterologous) virus. After the 2nd vaccination, all the groups had high titers of antibody to the reference H3N2 virus A/Swine/Texas/4199-2/98. Vaccination reduced clinical signs and lung lesion scores; however, virus was isolated 1 to 5 d after challenge from the nasal swabs of most of the pigs vaccinated with a commercial product but from none of the pigs vaccinated with the experimental product. The efficacy of the commercial vaccines may need to be improved to provide sufficient protection against emerging H3N2 variants.  相似文献   

18.
A study was undertaken of the protection induced by inactivated and live Aujeszky's disease virus vaccines. The vaccines were administered using a special device which, without the use of a needle, delivered the preparation intradermally. The trials were performed on 88 pigs which were vaccinated at the beginning of the fattening period both in experimental conditions and in pig herds. All the pigs were challenged at the end of the fattening period in isolation units. The results obtained were compared with those obtained using the same vaccines injected intramuscularly. It was shown that vaccination via the intradermal route induced good protection in the vaccinated animals and was similar to that conferred by live virus vaccine injected intramuscularly. The results, with the inactivated virus vaccine, were not so good when it was injected via the intradermal route. Studies with intradermal vaccination showed no local lesion or very small nodules strictly localized to the dermis. The results also confirmed that the effects of challenge exposure depended on the health status of animals prior to infection and show the necessity to use a synthetic value (delta G) to interpret the data and mainly to compare the results objectively. In fattening pigs this vaccination procedure is attractive because (i) less animal constraint is needed than would be for intramuscular injections, (ii) injection can be checked by the presence of a visible papula at the site of inoculation and, (iii) pigs can be vaccinated in the ham while they are feeding. Injection without a needle also contributes to avoiding bacterial contamination under practical farm conditions of vaccination.  相似文献   

19.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

20.
The objectives were to determine transmissibility of PCV2 to na?ve contact pigs 140 days after infection of resident pigs and the benefit of vaccination with live-attenuated or inactivated chimeric PCV2 vaccines on chronic PCV2 infection. Twelve 6-week old PCV2 na?ve pigs were randomly divided into four groups of three pigs: negative controls, positive controls, and pigs vaccinated with either a live-attenuated or inactivated chimeric PCV1-2 vaccine. All animals were bled weekly and tested for anti-PCV2 antibodies and PCV2 and PCV1-2 DNA and all groups except negative controls were challenged at 10 weeks. Two pigs vaccinated with the live PCV2 vaccine were PCV1-2 viremic at a single observation point. Both vaccine regimens induced an anti-PCV2 antibody response which was detected sooner and reached a higher level with the commercial inactivated vaccine. Both vaccines significantly decreased the concentration and duration of PCV2 viremia compared to the positive controls. PCV2 DNA was detected in lymphoid tissues of 1/3 pigs in the live-attenuated vaccine group and 3/3 positive control pigs. Three, 2-week old, PCV2 na?ve contact pigs were comingled with each group at 168 days post-vaccination or 140 days post-challenge. After seven days of co-housing, the resident pigs were removed and the contact pigs remained for six weeks. Evidence of chimeric PCV1-2 vaccine or PCV2 challenge virus transmission to na?ve contact pigs was lacking in all groups. The results of this study suggest that 140-day closure of a small pig population in a controlled environment may result in stabilization and elimination of PCV2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号