共查询到20条相似文献,搜索用时 31 毫秒
1.
Jinhua Pan;Jin Wang;Shunyao Zhuang; 《European Journal of Soil Science》2024,75(4):e13539
Land use significantly affects soil biological fertility through impacts on carbon (C) and nitrogen (N) cycling. The present study investigated the effects of long-term rice cultivation after tidal flat reclamation on soil C and N metabolism, microbial biomass and biological fertility. Eighteen composite topsoil (0–20 cm) samples were identified in a chronosequence of coastal reclamation areas (0–700 years old) in subtropical monsoon climate zone, namely tidal flat (T0), salt marsh soil (S10) and paddy soil (P50, P100, P300 and P700). Using ANOVA analysis, mono-exponential regression model, and multiple linear regressions, soil organic matter (SOM), total nitrogen (TN), cumulative C mineralization content (Ct) and N mineralization content (Nt), basal soil respiration (BSR) and microbial biomass C and N (MBC and MBN) in the P50-P700 samples were significantly higher than those in the T0 and S10 samples, whereas C metabolic quotients (qCO2) in the P50-P700 were significantly lower than those in the T0 and S10 samples. The time to steady state for SOM and TN are 357 years and 80 years, respectively; 133 and 221 years for Ct and Nt, respectively; and 318 and 183 years for MBC and MBN, respectively. Also, a soil biological fertility index (SBFI) was calculated on the basis of SOM, BSR, Ct, MBC, qCO2 and qCM. P100-P300 samples had the highest SBFI score (28.7) and ranked in the class V (very high) of biological fertility, achieving steady-state conditions after 146 years. SBFI was significantly positively correlated with SOM, TN, MBC, MBN, BSR, Ct and Nt, whereas it was significantly negatively correlated with pH, qCO2 and C mineralization quotient (qCM). MBC and qCM were two independent variables with considerable positive effects on SBFI. Long-term rice cultivation could facilitate C and N accumulation and enhance biological fertility in soils via microbial activity, especially within 300 years. Our findings demonstrate that rice cultivation has the potential to enhance soil C and N accumulation. Carbon-related SBFI is suitable for assessing soils under long-term rice cultivation, mainly because the rice paddy field is an intensive and conservative system. 相似文献
2.
为了揭示煤矿区复垦土壤压实状况的时空变异规律,该文以未塌陷土地为对照,通过实地测定,分析5个复垦年限水平和垂直方面的土壤压实度变异特征。结果表明:复垦土壤表层压实度以复垦1 a(正在复垦)的最大,达到 2050 kPa,随着复垦年限增加逐渐减少,复垦5 a的最小(50 kPa),基本达到未塌陷土地的压实度。表层土壤压实度空间变异最大的是复垦5 a的土地(变异系数为68.40%),其次是未塌陷土地(52.58%),最小的是正在复垦的土地 (22.01%)。从各层的变异情况看,正在复垦的土地各个层次土壤压实度都较大且变异系数较低,其他复垦年限土壤压实度上面3层较小但变异大,至第4层(22.86~30.48 cm)达到较高值,且变异较小,之下压实度基本稳定。 相似文献
3.
平朔矿区露天煤矿排土场复垦类型及微地形对土壤养分的影响 总被引:5,自引:0,他引:5
研究土地复垦类型及微地形对土壤养分的影响对于指导土地复垦实践,控制复垦土地水土流失等具有重要的理论意义和实际应用价值。以平朔露天煤矿排土场为例,借助数理统计方法分析评价复垦类型与微地形因子(高程、坡度、坡向)对土壤有机碳、全氮、全磷、有效磷及速效钾含量的影响。结果表明:(1)复垦类型对各项土壤养分含量影响较为显著,不同的复垦类型中,各项土壤养分含量排序均为耕地林地草地;其中,土壤有机碳、全氮、全磷及速效钾含量,耕地分别为草地的2.15~2.68倍,林地的1.48~1.78倍,对于土壤有效磷,耕地中的含量为71.24mg/kg,为草地的11倍,林地的4倍;(2)坡度与土壤养分含量之间存在显著的相关性(p0.05),而高程、坡向与土壤养分含量的相关性较弱,表明排土场复垦区土壤养分受坡度影响较大,而受高程与坡向的影响较小;(3)复垦类型与坡度的交互作用对土壤养分含量产生一定的影响:同一复垦类型的不同坡度的土地养分含量存在差异,耕地的土壤养分含量随着坡度的增大在降低;同一坡度,不同的复垦类型条件下,土壤养分差异显著,总体趋势为耕地林地草地。 相似文献
4.
《Land Degradation u0026amp; Development》2017,28(2):664-672
In previous studies, the rate of soil carbon (C) sequestration decreased with increasing age of post‐mining soils. It was also shown to depend on plant biomass and earthworm bioturbation. Here, a soil transplant experiment was used to determine whether this decrease is caused by soil C saturation or other factors (such as bioturbation and litter input). Soils collected on 15‐, 25‐ and 50‐year‐old successional sites, dominated by willow (Salix caprea L.) and birch (Betula pendula Roth), and on a 50‐year‐old site reclaimed by the planting of alder (Alnus glutinosa L.) were placed in plastic boxes that were accessible to soil macrofauna. The boxes were buried in the 50‐year‐old reclaimed site and supplemented with either alder litter or successional (willow and birch) litter. Soil C content and soil C fractions (hot water C, particulate organic C, particulate organic C bound in aggregates and C bound to mineral soil) were studied. After 1 year, the C content increased by 2–5%, but there was no effect of soil source or litter type. For all C fractions, the relationships between change in C content and initial C content were described by bell‐shaped curves. Easily available C fractions were saturated earlier than more recalcitrant fractions. Despite these saturation tendencies in individual soil organic matter pools, the soil was evidently far from saturation after 50 years of soil development. The decrease in C sequestration with soil age previously observed for this soil was probably caused by a decrease in litter input rather than by C saturation. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
通过对农作物干物质光合作用平衡式法以及林业碳汇测算方法,估算了嘉兴市域主要农林业碳汇及其生态价值,分析了嘉兴市过去50余年土地利用方式的变化对农林作物碳吸收量的影响。估算结果显示,嘉兴平原主要农作物年吸收CO2量达544.9万t,释放O2396.3万t。当地的农林业中,水稻吸收CO2和制氧量占到主要农林作物总量的50%以上,水稻单位面积固碳制氧效益在当地农作物中也是最大的,而且水田土壤的单位面积有机碳储存量达到50.41 t·hm-2·a -1,明显高于旱地土壤36.27 t·hm-2·a -1。过去50多年来,嘉兴平原土地利用方式发生了大幅变化,特别在近30年间耕地面积均减少了20%以上,农作物种植面积减少了1/3,水稻面积减少了60%,而城镇建设面积增加了3.3倍,虽然农作物单产在持续增长,但农作物面积缩减的影响占主导地位,导致了2011年农林植物吸持CO2量比1985年减少了21%。 相似文献
6.
C. Monterroso F. Macías A. Gil Bueno C. Val Caballero 《Land Degradation \u0026amp; Development》1998,9(5):441-451
The reclamation and monitoring methodologies implemented at the mining waste dump at the As Pontes Lignite Mine in Galicia (NW Spain) are briefly described. In addition the factors affecting achievement of reclamation objectives and an evaluation of the factors limiting plant growth on the constructed soils are outlined. The most serious limitations were found in the oldest mine soils constructed from sulphide-bearing spoils; high acidity, toxicity, nutrient deficiency, seasonal waterlogging due to their impermeability, and compaction. The youngest soils were constructed using sulphide-free spoils as topsoil substitutes and had fewer limitations for plant development. The results show that proper handling of spoils, and paying special attention to selective placement of sulphide bearing materials, are the most important factors in providing a suitable medium for plant growth. © 1998 John Wiley & Sons, Ltd. 相似文献
7.
以神东公司马家塔露天矿为例,选择土壤有机质、全N、有效P、速效K、pH值、含水率、紧实度、容重和EC9项指标对复垦土壤质量进行了综合评价。研究采用相关系数法确定指标权重,以隶属度函数对指标进行标准化处理,最后采用指数和法评定土壤质量。在研究区划分了5个复垦年限,并且在复垦5a的土地上采集了6种不同植被类型的土壤样品,分5个层次分别进行评价土壤质量。结果显示:随着复垦年限的增加表层土壤质量不断提高,并且表层高于下层;复垦后种植不同植被土壤质量差异较大,种植牧草、杨树较好,耕地和针叶树较差。 相似文献
8.
黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响 总被引:27,自引:1,他引:27
土壤有机碳是陆地生态系统的重要碳库之一,增加土壤中碳的储量对于减缓全球变暖的趋势具有重要意义。通过野外样品采集及室内分析,比较了退耕1年,3年,5年,7年,10年,15年和25年7个不同年限撂荒地的土壤有机碳及其活性的变化。结果表明:耕地撂荒后,表层土壤有机碳及活性有机碳的含量随着退耕年限的增长呈增加趋势;土壤中的腐殖质以胡敏素为主,占总有机碳含量的70%~80%;深度在40cm以上的表土,腐殖酸总量及各组分含量都随着撂荒年限的增长呈递增趋势。说明耕地撂荒后,土壤中有机碳的含量明显增高,对增加土壤中有机碳的储量具有积极的意义;同时植被恢复后也减少了土壤中有机碳的流失。 相似文献
9.
Brbara A. Willaarts Cecilio Oyonarte Miriam Muoz‐Rojas Juan Jos Ibez Pedro A. Aguilera 《Land Degradation u0026amp; Development》2016,27(3):603-611
Managing soil carbon requires accurate estimates of soil organic carbon (SOC) stocks and its dynamics, at scales able to capture the influence of local factors on the carbon pool. This paper develops a spatially explicit methodology to quantify SOC stocks in two contrasting regions of Southern Spain: Sierra Norte de Sevilla (SN) and Cabo de Gata (CG). Also, it examines the relationship between SOC stocks and local environmental factors. Results showed that mean SOC stocks were 4·3 kg m−2 in SN and 3·0 kg m−2 in CG. Differences in SOC in both sites were not significant, suggesting that factors other than climate have a greater influence on SOC stocks. A correlation matrix revealed that SOC has the highest positive correlation with clay content and soil depth. Based on the land use, the largest SOC stocks were found in grassland soils (4·4 kg m−2 in CG and 5·0 kg m−2 in SN) and extensive crops (3·0 kg m−2 in CG and 5·0 kg m−2 in SN), and the smallest under shrubs (2·8 kg m−2 in CG and 3·2 kg m−2 in SN) and forests soils (4·2 kg m−2 in SN). This SOC distribution is explained by the greatest soil depth under agricultural land uses, a common situation across the Mediterranean, where the deepest soils have been cultivated and natural vegetation mostly remains along the marginal sites. Accordingly, strategies to manage SOC stocks in southern Spain will have to acknowledge its high pedodiversity and long history of land use, refusing the adoption of standard global strategies. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
S. Pulley H. Taylor J. M. Prout S. M. Haefele A. L. Collins 《Soil Use and Management》2023,39(3):1068-1081
Building up stocks of agricultural soil organic carbon (SOC) can improve soil conditions as well as contribute to climate change mitigation. As a metric, the ratio of SOC to clay offers a better predictor of soil condition than SOC alone, potentially providing a benchmark for ecosystem service payments. We determined SOC:clay ratios for 50 fields in the North Devon UNESCO World Biosphere Reserve using 30 cm soil cores (divided into 0–10 cm and 10–30 cm depth samples), with soil bulk density, soil moisture and land-use history recorded for each field. All the arable soils exceeded the minimum desirable SOC:clay ratio threshold, and the ley grassland soils generally exceeded it but were inconsistent at 10–30 cm. Land use was the primary factor driving SOC:clay ratios at 0–10 cm, with permanent pasture fields having the highest ratios followed by ley grass and then arable fields. Approximately half of the fields sampled had potential for building up SOC stock at 10–30 cm. However, at this depth, the effect of land use is significantly reduced. Within-field variability in SOC and clay was low (coefficient of variation was ~10%) at both 0–10 cm and 10–30 cm, suggesting that SOC:clay ratios precisely characterized the fields. Due to the high SOC:clay ratios found, we conclude that there is limited opportunity to market additional carbon sequestration as an asset class in the North Devon Biosphere or similar areas. Instead, preserving existing SOC stocks would be a more suitable ecosystem service payment basis. 相似文献
11.
M. Muoz‐Rojas A. Jordn L. M. Zavala D. De la Rosa S. K. Abd‐Elmabod M. Anaya‐Romero 《Land Degradation u0026amp; Development》2015,26(2):168-179
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
G. Girmay B. R. Singh H. Mitiku T. Borresen R. Lal 《Land Degradation u0026amp; Development》2008,19(4):351-367
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
Soil development and organic matter (OM) accumulation are vital for sustainability in reclaimed prime farmlands following mineral sands mining. Additionally, the effectiveness of soil reconstruction techniques on soil development greatly influences crop productivity. Soil development and management effects following mineral sands mining were evaluated in years 1 (2005), 4 (2009) and 6 (2011) at the Carraway‐Winn Reclamation Research Farm, VA, USA. Treatments for this full scale agricultural experiment are as follows: biosolids applied at a rate of 78 Mg/ha managed with conventional tillage (BIO‐CT) and no‐till (BIO‐NT), a 15‐cm topsoil cap (TS), and a lime + fertilized control. Crop yields were determined annually, and soils were collected and analysed for aggregate size distributions and OM pools (available, aggregate‐protected and mineral‐bound). Crop yields (Corn‐Zea mays and wheat/soybean‐Triticum aestivum/Glycine max) were generally larger in the biosolids treatments from 2005 to 2008, with no difference among treatments from 2009 to 2011. Whole soil carbon (C) and nitrogen (N) rapidly increased between 2005 and 2009, mainly in the large macroaggregate (2000–8000 μm) size fraction. Carbon accumulation rates in the whole soils ranged from 2.85 to 3.58 Mg C/ha in the first 4 yr of soil development (similar trends were observed for N). There were no differences for soil aggregate parameters among treatments until year 6, where biosolids treatments contained more microaggregate (53–250 μm) and mineral‐bound C and N relative to other treatments. Short‐term increases in crop yields and long‐term increases in stable soil C and N make biosolids applications a viable alternative to traditional TS replacement strategies for this mining land use scenario. 相似文献
14.
15.
K.Y. Chan 《Soil Use and Management》2001,17(4):217-221
Abstract. Changes in particulate organic carbon (POC) relative to total organic carbon (TOC) were measured in soils from five agronomic trial sites in New South Wales, Australia. These sites covered a wide range of different land use and management practices. POC made up 42–74% of TOC and tended to be greater under pasture and more conservative management than traditional cropping regimes. It was the form of organic carbon preferentially lost when soils under long-term pasture were brought under cultivation. It was also the dominant form of organic carbon accumulating under more conservative management practices (direct drilling, stubble retained and organic farming). Across all sites, changes in POC accounted for 81.2% (range 69–94%) of the changes in total organic carbon caused by differences in land use and management. Significant differences were found between pasture and cropped soils in the carbon content in the <53 μm fraction, particularly for hardsetting soils. However, even with these, POC was a more sensitive indicator of change caused by land use and management practices than TOC. The current method for measuring POC involves dispersion using sodium hexametaphosphate. The dispersing agent was found to extract 4–19 % of the TOC, leading to a significant under-estimation of POC. 相似文献
16.
Abstract. A model of the impact of land management changes upon soil organic carbon (SOC) was constructed, and the total amount of topsoil organic carbon was estimated for the arable area of England from 1940 to 2000. The largest influence on the overall mean SOC in arable topsoils proved to be a decline in the area of both permanent and temporary grassland. SOC declined over a prolonged period (60 years), but has now reached a plateau. Modelling changes in mean values enabled a statistical evaluation to be made between a measured decline in the number of sites with 'high' SOC levels between 1980 and 1995, and the decline predicted by the model. The SOC content of arable soils in England was measured at National Soil Inventory sites twice in recent decades: in 1980 and 1995. The proportion of fine textured soils in the lowest SOC class (<2.3%) rose from just over 40% to about 50% over the same period. There was a significant difference between the observed values of 1995 and those expected from modelling the decline from 1980 values, in the category of 'low SOC' fine textured soils. The variation in the fine textured soils represents a significant and widespread decline in topsoil organic carbon concentrations, which was greater than the underlying long-term trend. 相似文献
17.
Soil organic carbon (SOC) and selected soil properties were measured in fringe and ditch marshes and cropland of old and young reclaimed areas in a subtropical estuary in China in order to investigate the effects of land use and reclamation history on SOC. The results show that after the conversion of wetlands to cropland, a longer reclamation history (>20 yr) resulted in greater soil bulk density, salinity, clay and silt, and lower soil moisture, SOC and sand content, whereas a shorter reclamation history (<20 yr) induced smaller values for soil pH, moisture and sand. Ditch marshes had greater average SOC in the top 50 cm than fringe marshes and cropland. SOC decreased generally down soil profiles from 0 to 50 cm in depth, except for the obvious accumulation of SOC in deeper soils from old fringe and young ditch marshes. Ditch marshes had the greatest SOC densities in the top 50 cm in both regions compared to the other land uses. SOC densities in the top 50 cm were less in croplands than in fringe marshes in the young region, while there were no significant differences between them in the older one. Except for cropland, SOC densities in the top 50 cm of the fringe or ditch marshes in the old region were not significantly different from those in the young region. SOC in both regions was reduced by 13.53 × 104 t (12.98%) in the top 50 cm of the marshes after conversion to cropland, whereas the regional SOC storage increased by 29.25 t when ditch marshes were included. The results from regression analysis show that bulk density and soil moisture significantly influenced SOC. The total SOC stored in both ditch marshes and croplands was higher compared to fringe marshes. The regional SOC storage in the top 50 cm was not reduced after reclamation due to C accumulation in the ditch marshes. The regional effects of cultural practices should be taken into account in devising strategies for managing soils in coastal wetlands, particularly in the developing world. 相似文献
18.
海州露天煤矿排土场复垦区不同土地利用类型土壤入渗特征 总被引:1,自引:1,他引:1
为揭示排土场复垦区不同土地利用类型土壤的水源涵养功能,采用野外实地双环入渗试验和室内理化分析方法,系统地研究了海州露天煤矿排土场复垦区不同土地利用类型(乔木林地、灌木林地、农用地、荒草地)土壤入渗特性及其影响因素。结果表明:不同土地利用类型下的土壤初始入渗率、稳定入渗率和累计入渗量均表现为乔木林地灌木林地农用地荒草地;不同土地利用类型下土壤入渗过程的拟合优度存在差异,G-P综合模型、Kastiakov模型、Horton模型的平均拟合优度依次为0.926,0.908,0.905。G-P综合模型相对误差为79.21%~123.69%,更接近排土场复垦区土壤入渗的实际过程,可作为排土场复垦区土壤入渗过程的预测模型;不同土地利用类型下土壤初始入渗率与非毛管孔隙度呈显著正相关,稳定入渗率和累计入渗量与非毛管孔隙度、砾石含量和部分根系特征呈显著正相关;采用主成分分析评价的土壤入渗能力排序为乔木林地灌木林地农用地荒草地,初始入渗率、稳定入渗率、14min入渗率和累积入渗量的主成分方差累积贡献率为99.047%,较好地表达了土壤入渗能力。 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(9):1144-1157
Soil aggregates and organic matter are considered to be important indicators of soil quality. The objective of this study was to determine land-use effects on the distribution of soil organic carbon (SOC) associated with aggregate-size fractions. Bulk soil samples were collected from incremental soil depths (0–10, 10–20 20–40, 40–70, and 70–100 cm) under three land-use types: fruit tree orchards established in 1987, cropland, and forage field. Soil samples collected from these plots were analyzed for aggregate stability after wet sieving into four aggregate-size classes (>2000, 250–2000, 53–250, and <53 μm), and the concentration of SOC was determined in each size fraction. Cropland and forage field soils were significantly more alkaline than the fruit tree soil. Bulk densities were greater in cropland and forage field (1.40–1.52 g cm?3) than in fruit tree orchards (1.33–1.37 g cm?3). The total weight of soil aggregates varied in the order of forage field > cropland > fruit tree orchard. Aggregate stability was greater in cropland and forage field than under fruit tree orchards. Soil organic C decreased with increasing soil depth but was greater under fruit tree orchards than others and was mainly concentrated in the topsoil layer (0–20 cm). Sieved fraction (<53 μm) had a greater SOC concentration, regardless of soil depth or land use. Our data supported the hypothesis that perennial vegetation (fruit tree orchard) and the proportion of aggregates with diameter <53 μm are suitable indicators of SOC accumulation and may therefore have a greater potential for SOC sequestration than the cropland. 相似文献
20.
以煤矿区井采为研究对象,建立了以自然环境条件、采矿条件、煤矿赋存条件3项为约束层,地形坡度、土地利用规划、煤层厚度等11个影响因子构成指标层的土地复垦成本评价指标体系,采用德尔菲法、层次分析法及YAAHP(V 6.0)软件确定了各项指标因子的权重。通过权重比较得出约束层的影响程度:煤矿赋存条件> 采矿条件> 自然环境条件,煤矿赋存条件中影响程度依次是:煤层厚度> 煤层倾角> 深厚比;采矿条件中各因子影响程度依次为:顶板管理方法> 采煤工艺> 采动程度;在自然环境条件下,土地利用规划> 有效土层厚度> 年降水量=土壤质地> 地形坡度。该评价指标体系的完善,为煤矿井采复垦成本修正系数的确定奠定基础。 相似文献