首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in quantity and composition of soil organic matter (SOM) in pasture receiving annual superphosphate (SP) applications for 41 years at 0 (control), 188 and 376 kg SP ha?1a?1 were investigated in soil samples collected from 0–75 and 75–150 mm depths by determining total carbon (TC), total nitrogen (TN), biomass C (BC), biomass N (BN) and subjecting the soils to sequential extraction using cold water, hot water, a mixture of hydrochloric (0.1 M HC1) and hydrofluoric (0.3 M HF) acids (HCl/HF), and sodium pyrophosphate (Na4P2O7) followed by sodium hydroxide (NaOH) for extracting labile and stable SOM fractions. There were significant differences in some SOM fractions between control (0) and SP treatments (188 and 376), especially in the topsoil (0–75 mm) but these were not observed between the two SP treatments. Soil TN (0–75 mm), BN and BN: TN ratio (0–75 and 75–150 mm depths) and the proportion of hot–water–extractable C (HC) in soil TC (HC:TC) (0–75 mm) were significantly greater in the SP treatments than in the control. HC1/HF extractable C and the proportions of soil TC as HC1/HF extractable C (HC1/HF extractable C: TC) were smaller in the topsoil of SP treatments than in the control. Similar results were observed in humin N: TN ratio and the proportions of soil TC as cold–water–extractable carbohydrate (CWcC: TC) and of soil HC as hot–water–extractable carbohydrate (HWcC : HC). Increases in the proportion of labile fraction in SOM were reflected in values of BN, BC: BN, BN: TN, HWcC : HC and HC: TC whereas decreases in the proportion of stable fraction in SOM were found in humin N: TN and HCl/HF–extractable C: TC ratios. Increases in labile SOM (BN and N–containing compounds such as amino acids and amino sugars, which were extractable by hot water but were not present as carbohydrate) and decreases in stable SOM (HC1/ HF–extractable C and humin fraction) in soils under pastures treated with annual SP applications compared with the control were attributed to pasture improvement and the amelioration of P and S deficiency, resulting in a greater return of plant residues and animal excreta and also an increase in clover growth and associated biological N2 fixation. The additional labile SOM in SP treatments compared with that of the control was not associated with the soil mineral Al and Fe components.  相似文献   

2.

Purpose

Soil respiration (R s) is controlled by abiotic soil parameters interacting with characteristics of the vegetation and the soil microbial community. Few studies have attempted a comprehensive approach that simultaneously addresses the roles of all the major factors known to influence R s. Our goal was to explore the links between heterogeneity in R s, aboveground plant biomass and belowground properties in three representative land-use types in a dry Mediterranean ecosystem: (1) a 150-year-old mixed Aleppo pine-kermes oak open forest, (2) an abandoned agricultural field, which was cultivated with cereal for several years until abandonment in 1980, when establishment of typical Mediterranean shrubland vegetation started and (3) a rain-fed olive grove, which has been cultivated for 100 years.

Materials and methods

We selected two distinctive sampling periods coinciding with annual minimum or near minimum (December) and maximum (April) rates of R s in this dry Mediterranean ecosystem. In each sampling period, R s, temperature and moisture, aboveground plant biomass, carbon (C) and nitrogen (N) contents in both light and heavy soil organic matter fractions, extractable dissolved organic C (EDOC), as well as microbial and fine root biomass were measured within each land-use type.

Results and discussion

Across sites, R s rates were significantly higher in April (3.07?±?0.1 μmol?m?2?s?1) than in December (1.30?±?0.1 μmol?m?2?s?1). The labile soil organic matter fractions (light fraction C and N contents, microbial biomass C and EDOC) were consistently and strongly related to one another, and to a lesser extent, to the C and N contents in the heavy fraction across sites and seasons. Linear models adequately explained a large proportion of the within-site variability in R s (R 2 values ranged from 41 to 91 % depending on land use and season) but major controls on R s differed considerably between sites and seasons. Primary controls on spatial patterns in R s were linked to recent plant-derived C inputs in both forest and olive grove sites. However, in the abandoned agricultural field site R s appeared to be mainly driven by microbial activity, which could be sustained by intermediate or recalcitrant C and N pools derived from previous land use.

Conclusions

Conversion of native woodland to agricultural land and subsequent land abandonment leads to profound changes in the relationships between R s, aboveground biomass and belowground properties in this dry Mediterranean ecosystem. While above- and belowground vegetation are the primary controls on spatial variability in labile soil C pools and R s in the open forest and olive grove sites, a complete lack of influence of current vegetation patterns on soil C pools and respiration rates in the abandoned agricultural field was observed.  相似文献   

3.
Characterization of the forms of phosphorus (P) in organic soil amendments was conducted by sequential P fractionation. More than 60% of total P was inorganic P (Pi). The major Pi forms in the cattle‐manure composts were NaHCO3‐ and HCl‐extractable P fractions. HCl‐extractable Pi was the predominant P form and a considerable proportion of the total P was present in the HCl‐extractable organic P fraction in the poultry manure composts and combined organic fertilizers.  相似文献   

4.
Fundamental knowledge about the complex processes during the decomposition, mineralization and transfer of residue organic matter in soils is essential to assess risks of changes in agricultural practices. In a double tracer (13C, 15N) experiment the effect of maize straw on the mineralization dynamics and on the distribution of maize-derived organic matter within particle size fractions was investigated. Maize straw (a C4 plant) labelled with 15N was added to soils (13.2 g dry matter kg–1 soil) which previously had grown only C3 plants, establishing two treatments: (i) soil mixed with maize straw (mixed), and (ii) soil with maize straw applied on the surface (surface). Samples were incubated in the laboratory at 14°C for 365 days. The size fractions (> 200 μm, 200–63 μm, 63–2 μm, 2–0.1 μm and < 0.1 μm), obtained after low-energy sonication (0.2 kJ g–1), were separated by a combination of wet-sieving and centrifuging. The mineralization of maize C was similar in the two treatments after one year. However, decomposition of maize particulate organic matter (predominantly in the fraction > 200 μm) was significantly greater in the mixed treatment, and more C derived from the maize was associated with silt- and clay-sized particles. A two-component model fitted to the data yielded a rapidly mineralizable C pool (about 20% of total C) and a slowly mineralizable pool (about 80%). Generally, the size of the rapidly mineralizable C pool was rather small because inorganic N was rapidly immobilized after the addition of maize. However, the different mean half-lives of the C pools (rapidly decomposable mixed 0.035 years, and surface-applied 0.085 years; slowly decomposable mixed 0.96 years, and surface-applied 1.7 years) showed that mineralization was delayed when the straw was left on the surface. This seems to be because there is little contact between the soil microflora and plant residues. Evidently, the organic matter is more decomposed and protected within soil inorganic compounds when mixed into the soil than when applied on the soil surface, despite similar rates of mineralization.  相似文献   

5.
Changes in biomass-S in relationship to biomass-C and N were evaluated, and the transformation of 35S-labelled SO42? among organic matter fractions were followed during incubation of a Black Chernozemic (Udic Haploboroll) and Orthic Gray Luvisol (Typic Cryoboralf) soils. There was a net immobilization of S with and without the addition of cellulose or sulfate after 64 days. In contrast, a net mineralization of N occurred. Cellulose decomposition rates responded to supplies of S available for new microbial cell synthesis.Fluctuations in the amounts of biomass-S during incubation of both soils followed biomass-C and biomass-N changes and C/S and C/N ratios of the biomass ranged between 47–121 and 4.9–7.7, respectively. Microbially-incorporated S was found concentrated within the biomass or partially transformed into soil organic matter.Fractionation of soils after incubation, by a 0.1 m NaOH-0.1 m Na4P2o7 extraction-separation technique showed significant increases in the C and N contents of the conventional humic acid (HA-A) and fulvic acid (FA-A), and humin (<2 μm) fractions. Biomass C accounted for 20–64% of the observed increases in these fractions suggesting that the differences were due partly to transformed microbial products and partly to microbial cell organic constituents released on lysis of cells during incubation. In contrast to C and N, the contents of total S and HI-reducible S increased in the FA-A fraction only and accounted for 45–76% of the immobilized labelled S.  相似文献   

6.
Various composts contain a significant amount of humic substances including humic acid (HA) and fulvic acids (FAs). The FA fraction in soils is considered to be sensitive to agronomic and environmental factors. In this study, three fractions of humic substances, HA (MW > 1000 Da), FA (MW > 1000 Da), and FA (MW < 1000 Da) were extracted from swine manure-based compost and characterized, and then, their reactivities were correlated with heavy metals. Compositions of the three fractions of humic substances were characterized by elemental and total acidity analyses and electron spin resonance (ESR), Fourier transform infrared (FTIR), and 13C nuclear magnetic resonance with cross-polarization and magic-angle spinning spectroscopic techniques. Elemental analyses indicated that HA has higher contents of C, H, N, and S than those of FAs. However, FA (MW > 1000) and especially FA (MW < 1000) have higher contents of O than that of HA (MW > 1000). The g values of the ESR spectra of the three fractions showed that the organic free radical characteristics and the widths of the spectra and free radical concentrations of the three fractions are significantly different. The FTIR spectra indicated that HA (MW > 1000) is abundant in C=C bonds while FA (MW > 1000), especially FA (MW < 1000), are abundant in C=O bonds. In addition, 13C NMR spectra indicate that carboxyl contents of FA (MW > 1000), especially FA (MW < 1000), are higher than that of HA (MW > 1000). The sequence of the reactivity in terms of acidic functional groups was FA (MW < 1000) > FA (MW > 1000) > HA (MW > 1000). Elemental and functional group compositions of the three fractions significantly correlated with reported reactivities with heavy metals. The application of swine manure-based compost containing HA and FAs fractions to soil and associated environments may thus significantly affect the concerned reactions with organic and inorganic compounds including pollutants.  相似文献   

7.
Abstract

A modified selenium (Se) fractionation procedure was used to study Se distribution in three soils (two silt loams and one silty clay). This sequential procedure consisted of: i) 0.2 M potassium sulfate (K2SO4)‐soluble fraction, ii) 0.1 M potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction, iii) 0.5 M ammonium hydroxide (NH3H2O)‐soluble fraction, iv) 6 M hydrochloric acid (HCl)‐extractable fraction, and v) residual fraction digested with perchloric (HClO4) and sulfuric (H2SO4) acids. The fractionation procedure had high recovery rates (92.5 to 106%). The Se distribution in soil was controlled by soil properties, such as pH, oxide, clay, and calcium carbonate (CaCO3) contents. In the untreated soil samples, residual Se fraction was dominant. In the Se‐enriched soils, the silty clay had significantly more Se in the NH3H2O and residual fractions while in the two silt loams the largest were KH2PO4 and residual fractions. The Se availability in the two silt loams was higher than in the silty clay. The Se availability pattern in the untreated soils was: unavailable (HCl + residual fractions) >> potentially available (KH2PO4 + NH3H2O fractions) > available (K2SO4 fraction), while in the Se‐enriched soils it was potentially available > unavailable > available.  相似文献   

8.
Previous research has shown that the addition of flue‐gas desulphurization (FGD) gypsum to poultry litter decreases water‐soluble P. No information is currently available, however, on extractable P fractions in poultry litter and P availability as affected by gypsum. The first objective of this work was to evaluate the effect of incubation time and rate of gypsum addition to litter alone or litter mixed with soil on total P and inorganic P in sequential extracts of H2O, 0.5 m NaHCO3, 0.1 m NaOH and 1 m HCl. Poultry litter was mixed with 25, 50, or 75% gypsum (by weight) and incubated alone or mixed with soil for 63–93 days at 25 °C, with periodic sequential extractions. For litter alone or litter mixed with soil, adding gypsum decreased total P and inorganic P in the H2O fraction and increased both P forms in the NaHCO3 fraction. These changes did not affect plant P availability as measured by Mehlich‐1 P. Increasing incubation time decreased total P and inorganic P in the H2O fraction of litter alone or litter mixed with soil, which was apparently caused by P immobilization by fungi. A second objective of this study was to evaluate P in the H2O and NaHCO3 fractions of litter as affected by stacking time and depth. Litter was stacked to a height of 1.2 m with samples taken immediately after stacking and 31 days later to be sequentially extracted for total P and inorganic P. Stacking time did not affect P in the H2O fraction, but it increased P in the NaHCO3 fraction by 25%. These results suggest that stacking poultry litter may increase the amount of labile P.  相似文献   

9.
Soil organic matter was extracted by a mixture of O.IM Na4P2O: O.IM NaOH from a chronosequence of weakly weathered soils developed on aeolian sand, and fractionated into humin (non-extractable), humic acid, and fulvic acid. The mass of total organic carbon in the profiles, the 14C content and the 13C/12C ratios were also determined. The weight of total carbon increased rapidly at first and then gradually without attaining a steady state. This trend was also shown by the humin and fulvic acid fractions, but the humic acid fraction appeared to have reached a maximum after about 3000 years. The order of total weights of the organic fractions was humin > fulvic acid > humic acid. The evidence suggests that the proportions of the humic fractions formed by decomposition are related to soil differences but not to vegetation. The greater part of the plant material found in the soils appears in the humin and fulvic acid fractions.  相似文献   

10.
It is generally accepted that particulate organic matter derives from plants. In contrast, the enriched labile fraction is thought by many to derive from microbes, especially fungi. However, no detailed chemical characterization of these fractions has been done. In this study, we wanted to assess the sources (plants or microbes; fungi or bacteria) and degree of microbial alteration of (i) three particulate organic matter fractions – namely the free light fraction (1.85 g cm?3), the coarse (250–2000 μm) and the fine (53–250 μm) intra‐aggregate particulate organic matter fractions – and of (ii) three density fractions of fine‐silt associated carbon – namely < 2.0, 2.0–2.2 (i.e. enriched labile fraction) and > 2.2 g cm?3– by analysing the amino sugars, by CuO oxidation analyses, and by 13C‐, 1H‐ and 31P‐NMR analyses. Macroaggregates (250–2000 μm) were separated by wet‐sieving from a former grassland soil now under a no‐tillage arable regime. The three particulate organic matter fractions and the three density fractions were isolated from the macroaggregates by a combination of density flotation, sonication and sieving techniques. Proton NMR spectroscopy on alkaline extracts showed that the enriched labile fraction is not of microbial origin but is strongly degraded plant material that is enriched in aliphatic moieties partly bound to aromatics. In addition, the enriched labile fraction had a glucosamine content less than the whole soil, indicating that it is not enriched in carbon derived from fungi. Decreasing yields of phenolic CuO oxidation products and increasing side‐chain oxidation in the order coarse intra‐aggregate particulate organic matter < fine inter‐aggregate particulate organic matter < fine‐silt fractions indicate progressive alteration of lignin as particle size decreases. The light fraction was more decomposed than the coarse inter‐aggregate particulate organic matter, as indicated by (i) its larger ratio of acid‐to‐aldehyde of the vanillyl units released by CuO oxidation, (ii) the smaller contribution of H in carbohydrates to total extractable H as estimated by 1H‐NMR spectroscopy, and (iii) a larger contribution of monoester P to total extractable P in the 31P‐NMR spectra. In conclusion, the four fractions are derived predominantly from plants, but microbial alteration increased as follows: coarse inter‐aggregate particulate organic matter < light fraction ≈ fine inter‐aggregate particulate organic matter < enriched labile fraction.  相似文献   

11.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

12.
The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P?0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH4-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n?25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.  相似文献   

13.
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots. Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue. Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction. Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time).  相似文献   

14.
We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.  相似文献   

15.
P.M Huang  M.K Wang  M.H Wu  C.L Liu  T.S.C Wang 《Geoderma》1977,18(4):251-263
Twenty two surface soils, representing six parent materials and four soil groups, were sampled in Taiwan for the present study.Except in the soil derived from volcanic ash, the sesquioxidic components and relatively easily extractable Si were present only in small amounts in the NaOAc and H2O2- NaOAc extractable fractions. In addition to Fe, both Si and Al were present in the dithionite-citrate-bicarbonate extracts in considerable amounts, indicating that Si and Al were either present separately or in association with Fe in the sesquioxidic fractions of the soils. The amounts of Si, Al and Fe extracted by the dithionite-citrate-bicarbonate and boiling KOH treatments differed from sample to sample, indicating that they are important variables in the nature of the soils studied.The amounts of the ammonium oxalate-extractable Al and Fe, representing the noncrystalline sesquioxidic products of relatively recent weathering, also differed with parent materials and pedogenic processes. The statistical data indicate that the ammonium oxalate-extractable Al and Fe are related to the contents of organic matter but not to acidity and the contents of clay. The percentage distribution of the extractable Al in the > 2 μm fractions of the selected soil samples ranged from 22.0 to 52.5% and that of the extractable Fe from 11.1 to 38.1%, indicating that the active non-crystalline Al and Fe components in the non-clay fractions deserve close attention in the study of pedogenesis and other soil physicochemical reactions in relation to soil fertility and environmental protection.  相似文献   

16.
Determination of the labile soil carbon (C) and nitrogen (N) fractions and measurement of their isotopic signatures (δ13C and δ15N) has been used widely for characterizing soil C and N transformations. However, methodological questions and comparison of results of different authors have not been fully solved. We studied concentrations and δ13C and δ15N of salt‐extractable organic carbon (SEOC), inorganic (N–NH4+ and N–NO3?) and organic nitrogen (SEON) and salt‐extractable microbial C (SEMC) and N (SEMN) in 0.05 and 0.5 m K2SO4 extracts from a range of soils in Russia. Despite differences in acidity, organic matter and N content and C and N availability in the studied soils, we found consistent patterns of effects of K2SO4 concentration on C and N extractability. Organic C and N were extracted 1.6–5.5 times more effectively with 0.5 m K2SO4 than with 0.05 m K2SO4. Extra SEOC extractability with greater K2SO4 concentrations did not depend on soil properties within a wide range of pH and organic matter concentrations, but the effect was more pronounced in the most acidic and organic‐rich mountain Umbrisols. Extractable microbial C was not affected by K2SO4 concentrations, while SEMN was greater when extracted with 0.5 m K2SO4. We demonstrate that the δ13C and δ15N values of extractable non‐microbial and microbial C and N are not affected by K2SO4 concentrations, but use of a small concentration of extract (0.05 m K2SO4) gives more consistent isotopic results than a larger concentration (0.5 m ).  相似文献   

17.
The primary source of dissolved silicon (Si: DSi) is the weathering of silicate minerals. In recent years, it has been shown that Si cycling through vegetation creates a more soluble Si pool in the soil, as amorphous Si (ASi) deposits in plants (phytoliths) are returned to the soil through litter. Amorphous Si accumulation in soils depends on a number of factors, including land use. In addition to the biogenic ASi fraction, soils contain other non‐biogenic amorphous and sorbed Si fractions that could contribute significantly to DSi export to rivers, but hitherto these Si fractions have been difficult to separate from each other with traditionally applied extraction methods. The objective of this paper is to understand better how land use affects the distribution of the different extractable Si fractions. We re‐analysed samples from the land‐use gradient studied previously by Clymans et al. ( 2011 ) with a continuous Si and aluminium (Al) extraction technique. Different extractable Si fractions of biogenic or pedogenic origin were successfully separated on the basis of their dissolution in alkaline solutions (Na2CO3 and NaOH) and Si:Al ratios. We show that forests store almost all alkaline extractable Si (AlkExSi) in the pedogenic fraction while the importance of phytoliths increases with human disturbance to become the dominant fraction in the AlkExSi pool at the arable site. The pedogenic AlkExSi pool is also more reactive than the phytolith‐bound Si. Conversely, pastures and croplands tend to preserve phytoliths in the soil, which are less reactive, decreasing the potential of DSi export relative to forested ecosystems.  相似文献   

18.
The dynamics of the organic matter composition in soddy-podzolic soils during the natural reforestation of an arable land in the southern taiga zone have been discussed. It has been shown that the contents of the total and labile carbon in the old plow horizon increase with the age of the fallow in the chronosequence of soils established in the Parfen’evo district of Kostroma oblast. The parameters characterizing the labile soil organic matter include the contents of the carbon extractable by mild chemical extractants (distilled water, 0.1 M K2SO4 solution, 0.1 M neutral Na4P2O7 solution), the microbial biomass, and the light fraction. The granulo-densimetric fractionation has shown that the contents of carbon in the light and organomineral fractions of the soil vary in the course of the postagrogenic succession. The content of the clay-fraction carbon increases and its portion in the total carbon of the soil decreases at the transition from the plowland to the forest. The reforestation of agrosoddy-podzolic soils enhances the physical protection of the soil organic matter due to the increase in the portion of microaggregate carbon.  相似文献   

19.
Aim of our study was the development of the methodological basis for the characterization of humic fractions of a long‐term field experiment. Humic acids (HAs) were extracted from three layers of a nontilled soil using three different extractants (1 M NaOH, 0.1 M Na4P2O7, 1 M Na2CO3), and the humin fraction was enriched. NaOH as extractant for FTIR analysis of humic substances yields higher resolved IR spectra, especially in the important regions of stretching vibrations including aromatic and aliphatic groups and in the fingerprint area including amides, aliphats, and aromats than the other extractants. The NaOH extraction has lower extraction yields as compared to Na4P2O7 and Na2CO3 and represents a different part of the soil organic matter (SOM). This is reflected by lower C : N ratios and higher E4 : E6 and fulvic acid–to–humic acid ratios as compared to the other extractants. The FTIR band areas of HA fraction obtained by NaOH showed an increase of the aromatic and carbonyl groups and a decrease of amide groups with increasing soil depth. Aliphatic groups showed contradicting results: The bands of the stretching vibrations increased, and the band of the bending vibrations decreased. We assume that band interactions in the bending vibrations were responsible for that phenomenon under the assumption of an increase of aliphatic groups with increasing soil depth. The IR bands of the enriched humin fraction showed a decreasing trend in case of both aliphatic bands deriving from stretching vibrations and an increase of aromatic characteristics with depth. Our study led to the conclusion that HA fractions obtained by 1 M NaOH represent a small and dynamic fraction indicated by the measured yields in combination with values of Nt, C : N, E4 : E6 ratios, and ratios of fulvic acids (FA) to HA. The humin fraction has a high contribution to the total organic C and represents a more stabilized fraction of SOM which still shows changes in its aromatic and aliphatic characteristics with soil depth.  相似文献   

20.
H.H. Le Riche 《Geoderma》1973,9(1):43-57
This previously described buried soil, developed in uniform parent material, was used to study the relative movements of elements and other soil components down the profile. Samples from all horizons were treated with hydrogen peroxide and ammonium oxalate, under ultra-violet light, to remove organic matter and sesquioxides, and the residues were subdivided into six particle size fractions.Downward movement of clay (< 0.5 μm) was accompanied by movement of extractable Al2O3 and Fe2O3, thus identifying these as part of the mobile fraction. The less close relationship of extractable Fe2O3 to the clay suggested that it also occurred partly in coarser aggregates. Proportions of minor elements extracted varied from < 1% for Sr to nearly complete extraction of Co, Cu and Mo in some horizons. The extractable fractions of most minor elements throughout the profile behaved more like Fe2O3 than Al2O3. In the extraction residues, nearly all elements were enriched in the clay fractions relative to the coarser fractions; this being greatest for V and Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号