首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acidified (H2SO4+HNO3, 3:1) throughfall waters (pH 3.16 and 3.40 as volume weighted means or control (untreated throughfall water, pH 3.72) were applied for 3.5 yr by an automatic irrigation device to lysimeters containing podzolized spruce forest soils of 0–5, 0–15 and 0–35 cm soil depth. The total volume of the leachates was measured together with their pH and total content of DOC, Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Cd and Pb and the initial amounts of metals and H in the soil. The main part of H+ added with the throughfall waters was retained within the soil. Concentrations and fluxes of Mg, Ca, Mn, Zn and Cd in the soil were significantly increased by addition of acidified throughfall waters; K was less affected. As a consequence of lowered flux of DOC in the A horizon as acid input increased, Fe, Al, Cu, and Pb fluxes also decreased. The mobility of these metals in the A horizon was shown to be regulated mainly by the formation of watersoluble organic compounds rather than directly by pH variations. Compared to the control, the additional annual loss of Mg from the soil profile in the most acid treatment was c. 10% of the currently exchangeable amount.  相似文献   

2.
Concentrations of chemical elements in tree roots including heavy metals from air pollution Total concentrations of P, S, Na, K, Mg, Ca, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were measured in roots from beech, spruce, ash, maple and a forest herb (Mercurialis perennis). The root samples were taken from a site with an acid soil type (Saure Braunerde) and from a site with calcareous soil (Rendzina). All elements except Mn, Zn and Pb (on acid soils) and Ca (on calcareous soils) showed higher concentrations in finest roots (<1 mm diameter) compared to fine roots (1–2 mm). In the case of the toxic heavy metals, this is interpreted as a consequence of reduced root uptake due to physiological processes or to organic complexing, followed by an accumulation at the root surface. Compared with aboveground plant parts, roots show accumulation of Al, Pb, Cd and Zn, indicating reduced translocation from roots to shoots. Roots from acid soil show higher concentrations of P, Mn, and Pb than in calcareous soil. The concentrations of Al and heavy metals in the roots are considered to be a consequence of the contamination of the investigated forest sites by long-range transported air pollutants, i.e. acid precipitation and deposition of heavy metals.  相似文献   

3.
The fluxes of metals (Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Pb, Cd, Cr, and Ni) in two spruce forest soils in S. Sweden were quantified using the lysimeter technique. Amounts in precipitation (dry and wet), throughfall, litterfall and annual accumulation in biomass were also quantified, as well as stores in soil and biomass. The metal concentrations of the soil solutions varied greatly according to season. The leaching of some metals (Fe, Cu, Pb, Cr, and organic forms of Al) was associated with the leaching of organic matter. These complexes were leached from the A horizon in considerable amounts. They were precipitated in the upper B horizon and only small amounts were transported further downward. By contrast, the leaching of Na, Mg, Ca, Mn, Cd, Zn, Ni, and inorganic forms of Al increased with increasing soil depth. The concentrations of these metals also increased with increasing soil solution acidity. The highest concentrations were often found at the transition to the C horizon. The amounts of Na, K, Mg, Ca, Mn, Al, Zn, Cd, Cr, and Ni leached from the rooting zone were found to be larger than the amounts deposited from the atmosphere, the main source of these metals being the mineral soil. The reverse was true of Ph, Cu, and Fe, the sink being the upper part of the B horizon.  相似文献   

4.
The study quantifies the amount of metals (Na, K, Mg, Ca, Al, Fe, Mn, Ni, Cr, V, Cu, Zn, Cd, Pb) leached from the A-horizon of a podzolic spruce forest soil in southern Sweden during 2.5 yr, and offers statistical evidence of environmental conditions of importance to metal release. Considerable losses of Pb, Cr, Ni and V may occur from the A-horizon of forest soils under conditions favoring leaching of organic matter, Fe, and Al, i.e. during periods of comparably high soil temperature and moisture. Metals with a larger fraction present in exchangeable form (Na, Mg, Ca, Zn, Cd) are more susceptible to minor pH changes. An accelerated deposition or internal production of acidic matter therefore will reduce the retention times of these elements particularly.  相似文献   

5.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

6.
我国几种土壤中铁锰结核的元素组成和地球化学特点   总被引:7,自引:0,他引:7  
The objective of this research was to isolate a dichlorvos (2,2-dichlorovinyl dimethyl phosphate)-degrading strain of Ochrobactrum sp., and determine its effectiveness in remediation of a dichlorvos-contaminated soil. A dichlorvos-degrading bacterium (strain DDV-1) was successfully isolated and identified as an Ochrobactrum sp. based on its 16S rDNA sequence analysis. Strain DDV-1 was able to utilize dichlorvos as a sole carbon source, and the optimal pH and temperature for its cell growth and degradation were 7.0 and 30 ℃, respectively. Also, the growth and degradation of strain DDV-1 showed the same response to dissolved oxygen. In addition, the soil degradation test indicated that in soil spiked with 100 mg L^-1 or 500 mg L^-1 dichlorvos and inoculated with 0.5% or 1.0% (v/v) strain DDV-1, complete degradation of dichlorvos could be achieved in 24 h. The present study showed that strain DDV-1 was a fast dichlorvos-degrading bacterium in soil. However, further research will be needed to clarify the degradation pathway and the properties of the key enzymes involved in its biodegradation.  相似文献   

7.
The aim of the current study was to identify major soil and leaf factors accounting for low natural rubber (NR, Hevea brasiliensis) productivity on tropical acid Acrisols in Vietnam. Twenty NR plots were measured with NR productivity, leaf factors (N, P, K, Ca, Mg, Mn, Cu, Fe, and Zn), soil factors (pH, particle size distribution, total C, N, P, K, exchangeable K, Ca, Mg, Al, Mn, Fe, Zn, available P). Cluster analysis showed that NR productivity could be separated into three clusters with low (23.2), medium (38.2), and high (61.3 g tree?1 harvest?1) yield. High-yield cluster had higher leaf P concentration and soil pH, while low-yield cluster had higher leaf Mn, soil exchangeable Al, and Mn concentration. Simple and multiple linear regression analysis applied with backward elimination procedure suggested that leaf and soil toxic concentration may be responsible for low NR productivity in the study soil.  相似文献   

8.
Samples of 21 soil profiles and 165 top soils from an area of approximate 1.5km^2 on red-earthy hill landscape were collected and analysed.The content of Ca,Mg,K,P,Fe,Mn,Zn and Cu in soils relate with the kind of parent material and the position of topography,however,there is great variation due to the local difference of the form of soil utilization.From the difference in spatial distribution of elements content,it is believed that eight kinds of elements are lost by chemical leaching and physical translocation,meanwhile some are added (such as Ca,P,K,Mg) and some mobilized (such as Fe,Mn,Zn,Cu and P) through cultivation,fertilization and irrigation in the soils on the landscape investigated.The sectional differentiation in abundance or deficiency of elements in top soils on the landscape investigated is distinct,which is important for carrying out agricultural management and reasonable fertilization according to local conditions.  相似文献   

9.
The purpose of this study was to investigate the influence of soil geochemistry on the concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn, Cu, and Fe in cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate (AS) soils in Western Finland. A total of 11 topsoil (0–20 cm) and corresponding cabbage samples and three whole‐soil profiles (≈ 0–260 cm) were collected on three agricultural fields. The concentrations of Co and Zn in cabbage were correlated with the NH4Ac‐extractable (easily available) concentrations in the topsoil, indicating that the uptake of these elements in cabbage is largely governed by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in general elevated relative to that of Finnish average values, although some AS soils showed enriched concentrations of these metals in the soil and cabbage. Significant geochemical differences (e.g., oxidation depth, organic‐matter and S content, pH) were observed among the studied AS soils, while, on the other hand, the concentrations of Ca, K, Mg, P, Ni, Mn, Cu, and Fe in cabbage were relatively similar. The hydroxylamine‐extractable concentrations of these elements in the topsoil were not correlated to those in cabbage, suggesting that uptake is not governed by the oxide‐bound fraction of these elements in the soil. Similarly, the easily available concentrations of Ca, P, Ni, Mn, Cu, and Fe in the topsoil were not correlated to those in cabbage, indicating that uptake is independent of the easily available concentrations in the soil. Hence, it is suggested that cabbage can regulate and thus optimize its concentrations of Ca, P, Ni, Mn, Cu, and Fe. Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn, and Mn in the topsoil nor the concentrations in cabbage. However, the subsoil with a lower oxidation depth, which is to a smaller extent affected by leaching, may partly be enriched in these metals. Nevertheless, these showed no increased concentrations in cabbage. Based on these findings, it is suggested that the large amounts of metals mobilized in AS soils are easily lost to drains, subsequently contaminating nearby waterways and estuaries whereas they are only partly enriched in cabbage and other previously studied crops (oat).  相似文献   

10.
Availability and plant uptake of nutrients were evaluated in three tropical acid soils (Kandiudult) amended with paper pulp and lime under greenhouse conditions. Amendments were applied to attain target pH values of 5.5, 6.0, and 6.5. A control treatment (no paper pulp or lime added) was also included. Rye grass (Lolium perenne L.) as a test plant was grown for three successive cycles of 40 days each. Extractable nutrients and cumulative nutrient uptake were determined. The application of paper pulp or lime resulted in a significant increase in exchangeable Ca and K and a decrease in exchangeable Mg and extractable Fe, Mn, and Zn. Amendment of soils with paper pulp or lime increased plant uptake of Ca and Mg and decreased that of K, Mn, and Zn. Both amendments behaved similarly, but the effect of lime seemed generally greater than that of paper pulp. Paper pulp in tropical acid soils behaved as a liming agent rather than an organic amendment. Similar to lime, amendment of soils with paper pulp resulted in an increase in availability of Ca and Mg and in a decrease in availability of K, Mn, and Zn for plants. Soil extractions appeared to be appropriate for assessing the availability of Ca, Mn, and Zn. Soil pH and effective cation exchange capacity positively influenced the availability of Ca and negatively the availability of Mn and Zn. Thus, the precision of predicting nutrient availability in paper pulp amended tropical acid soils could be improved by including soil pH or effective cation exchange capacity in relevant regression equations.  相似文献   

11.
The purpose of this study was to investigate the influence of soil geochemistry on the concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn, Cu, and Fe in cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate (AS) soils in Western Finland. A total of 11 topsoil (0–20 cm) and corresponding cabbage samples and three whole‐soil profiles (≈ 0–260 cm) were collected on three agricultural fields. The concentrations of Co and Zn in cabbage were correlated with the NH4Ac‐extractable (easily available) concentrations in the topsoil, indicating that the uptake of these elements in cabbage is largely governed by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in general elevated relative to that of Finnish average values, although some AS soils showed enriched concentrations of these metals in the soil and cabbage. Significant geochemical differences (e.g., oxidation depth, organic‐matter and S content, pH) were observed among the studied AS soils, while, on the other hand, the concentrations of Ca, K, Mg, P, Ni, Mn, Cu, and Fe in cabbage were relatively similar. The hydroxylamine‐extractable concentrations of these elements in the topsoil were not correlated to those in cabbage, suggesting that uptake is not governed by the oxide‐bound fraction of these elements in the soil. Similarly, the easily available concentrations of Ca, P, Ni, Mn, Cu, and Fe in the topsoil were not correlated to those in cabbage, indicating that uptake is independent of the easily available concentrations in the soil. Hence, it is suggested that cabbage can regulate and thus optimize its concentrations of Ca, P, Ni, Mn, Cu, and Fe. Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn, and Mn in the topsoil nor the concentrations in cabbage. However, the subsoil with a lower oxidation depth, which is to a smaller extent affected by leaching, may partly be enriched in these metals. Nevertheless, these showed no increased concentrations in cabbage. Based on these findings, it is suggested that the large amounts of metals mobilized in AS soils are easily lost to drains, subsequently contaminating nearby waterways and estuaries whereas they are only partly enriched in cabbage and other previously studied crops (oat).  相似文献   

12.
Surveys conducted from 1987 to 1990 of Norway spruce [Picea abies(L.) Karst.] within 12 plantations across 4 northeastern states revealed symptoms of crown discoloration and defoliation on a site-specific basis. Foliar N. K. and Ca concentrations of most of the sampled trees were above deficiency ranges, while foliar Mg concentrations of most of the symptomatic trees were below the deficiency range within the plantations. Soil pH, exchangeable Mg, K, Ca, and their corresponding percent saturations in soils were lower, while soil Al concentrations were higher for most of the symptomatic trees in comparison to the healthy trees. Foliar concentrations of Mg, Ca, K, P, Al, Mn, Pb, and Zn were positively correlated with concentrations of corresponding soil elements. Knowledge of nutrient deficiency ranges may help diagnose foliar symptoms, but their exclusive use may overly simplify relationships between foliar symptoms and foliar elements. Principal component regression analysis of the data provided assessment of interactions and balances among foliar elements, and among soil elements and their possible influences on crown symptoms. Crown symptoms were not only associated with concentrations of individual elements of foliage and soils, but also associated with interactions and balances between these elements. The influences of individual soil elements on discoloration and defoliation may depend upon other elements in soils. Soil Al may induce crown discoloration and defoliation by interfering with Mg, Ca, and K uptake in acidic soils.  相似文献   

13.
The mobility of major cations (H+, ammonium, Al, Ca, Na, Mg, K, Fe), heavy metals (Mn, Zn, Ni, Cd) and anions (chloride, sulphate and nitrate) was studied in the laboratory in an acidified brown soil from a Norway spruce forest. Lysimeters containing undisturbed soil columns of the A-horizon and the A- plus B-horizon were watered with 540 mm of throughfall precipitation collected in situ, either directly (pH 3.6) or adjusted to pH 3.3 or 2.8. The pH 3.3 treatment increased leaching of Mn and Cd from the B-horizon. The pH 2.8 treatment increased leaching of ammonium, Na, Ca, Mg, K, Mn, Zn and Cd from the A-horizon and ammonium, Al, Na, Ca, Mg, K, Mn, Zn and Cd from the B-horizon. Fe leaching from the A-horizon was decreased by both acidic treatments, and the pH of the leachates was not significantly affected. Sulphate retention was 138-161 meq m?2 yr?1 by all treatments. Due to experimental conditions nitrate leaching was observed in all lysimeters.  相似文献   

14.
Acid irrigation (pH 2.7 to 2.8; mean annual input 4.1 kmol H+ ha?1 as H2SO4) has caused significant changes in the chemistry of the soil of a mature Norway spruce stand (Picea abies [L.] KARST.) after 4 years of treatment. In the surface humus layer around 20% of the exchangeable Ca, Mg, K and Mn ions were leached. This was connected with a decrease of pH and cation exchange capacity. In the mineral soil no changes of pH and cation adsorption were observed. However there was a significant increase of Al3+ ions in the soil solution, exceeding 20 mg L?1, mainly caused by dissolution of Al-hydroxides and Al-hydroxosulphates. Also the concentrations of ionic Cu, Zn and Cd were nearly doubled. Manganese concentrations are fluctuating according to periods with and without acid irrigation, showing reduction and oxidation phases. In contrast to microorganisms, certain moss species and Oxalis acetosella, the mature spruce stand was not severely damaged up to now. It is hypothesized that Ca/Al and Mg/Al ratios of single horizons are insufficient for characterizing Al stress in the field. Liming (4 Mg ha?1) led to a significant increase of dissolved organic C, which is associated with mobilization of metals such as Pb, Cu and Al in organic complexation. Also nitrification increased in the surface humus layer. As a consequence the nitrate concentrations in the seepage water exceeded 250 mg NO3 L?1.  相似文献   

15.
The variation in and relationships between aluminum and other major metals including Ca, Mg, Mn, and K in root‐zone soil solutions were studied by growing buckwheat (Fagopyrum esculentum Moench. cv. Jiangxi), an Al accumulator, in pots filled with an acid soil amended with CaCO3 and unamended controls with a preinstalled nondestructive soil‐solution sampler. Soil solutions were collected every 7 d with a syringe connected to the sampler. The results showed that pH of the soil solution was not the only factor controlling the concentration of Al. Significant positive linear correlations were found between Al and Ca as well as between Al and Mg in soil solutions from the controls. The ratio of base cations (BC, Ca+Mg) to Al might partly explain the high Al resistance of buckwheat. Oxalate secretion from roots significantly activated Al in acid soils, which may be important for changes of Al in soil solutions, but it also caused decreased concentrations of Ca, Mg, and Mn. It is concluded that the variation of metal concentrations including Al, Ca, Mg, and Mn is a holistic effect involving competition for exchange sites among Ca, Mg, H, and Al, the chelation by oxalate secreted from roots, and metal uptake by buckwheat.  相似文献   

16.
17.
Arbuscular mycorrhizal fungi (AMF) benefit plants by allowing them to grow and produce in relatively harsh mineral stress environments. This has been attributed extensively to ability of AMF to expand the volume of soil for which mineral nutrients are made available to plants compared to what roots themselves would contact. This article reviews the effects of AMF on enhancing/reducing acquisition of phosphorus (P), nitrogen (N), sulfur (S), boron (B), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), silicon (Si), and some trace elements in plants. The nutrients enhanced most in host plants grown in many soils (e.g., high and low soil pH) are P, N, Zn, and Cu, but K, Ca, and Mg are enhanced when plants are grown in acidic soils. Many AMF have also the ability to ameliorate Al and Mn toxicities for plants are grown in acidic soil.  相似文献   

18.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

19.
李娟  周立军 《土壤》2020,52(3):645-650
为了解在成龄胶园间作的五指毛桃根际与非根际土壤及其根中主要中、微量元素含量情况,测定了实验区根际与非根际土壤各30个和对应五指毛桃根的钙、镁、铁、锰、铜和锌含量,分析了两者之间的关系,并评价了根际与非根际土壤中、微量元素丰缺状况。结果表明,非根际土壤钙、镁、铁、锰含量的平均值都高于根际土壤的,而铜、锌含量的平均值都低于根际土壤的。土壤钙、镁含量80%以上处于缺水平,而铁、锰含量处于丰或很丰水平,铜和锌含量处于适中水平。五指毛桃根际与非根际土壤中、微量元素存在空间上的广泛变异。五指毛桃根中、微量元素的平均值从大到小的排序是钙>镁>锰>铁>锌>铜。土壤中、微量元素与五指毛桃根中相对应的中、微量元素的相关性不强,且表现复杂。本研究结果揭示,在成龄胶园间作五指毛桃应当适量施用钙肥、镁肥和喷施一些铜元素叶面肥,并实行科学施肥,减少养分淋失。  相似文献   

20.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号