首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bitterness and pungency are important parameters for olive oil quality. Therefore, two instrumental methods for evaluation of these taste attributes were developed. The first one is based on the photometric measurement of total phenolic compounds content, whereas the second one is based on the semiquantitative evaluation of hydrophilic compounds by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Evaluation of total phenolic compounds content was performed by a modified method for the determination of the K(225) value using a more specific detection based on the pH value dependency of absorbance coefficients of phenols at λ = 274 nm. The latter method was not suitable for correct prediction, because no significant correlation between bitterness/pungency and total phenolic compounds content could be found. For the second method, areas of 25 peaks detected in 54 olive oil samples by a HPLC-MS profiling method were correlated with the bitterness and pungency by partial least-squares regression. Six compounds (oleuropein aglycon, ligstroside aglycon, decarboxymethyl oleuropein aglycon, decarboxymethyl ligstroside aglycon, elenolic acid, and elenolic acid methyl ester) show high correlations to bitterness and pungency. The computed model using these six compounds was able to predict bitterness and pungency of olive oil in the error margin of the sensory evaluation (±0.5) for most of the samples.  相似文献   

2.
The phenolic fraction of virgin olive oil influences both its quality and oxidative stability. One of the principal threats of the quality of olive fruit is the olive fly ( Bactrocera oleae) as it alters the chemical composition. The attack of this olive pest has been studied in order to evaluate its influence on the quality of virgin olive oil (free acidity, peroxide value, fatty acid composition, water content, oxidative stability, phenols, and antioxidant power of phenolic fraction). The study was performed using several virgin olive oils obtained from olives with different degrees of fly infestation. They were acquired in different Italian industrial mills from the Abruzzo region. Qualitative and quantitative analyses of phenolic profiles were performed by capillary electrophoresis-diode array detection, and electrochemical evaluation of the antioxidant power of the phenolic fraction was also carried out. These analyses demonstrated that the degree of fly attack was positively correlated with free acidity ( r = 0.77, p < 0.05) and oxidized products ( r = 0.58, p < 0.05), and negatively related to the oxidative stability index ( r = -0.54, p < 0.05) and phenolic content ( r = -0.50, p < 0.05), mainly with secoiridoid compounds. However, it has been confirmed that the phenolic fraction of olive oil depends on several parameters and that a clear correlation does not exist between the percentages of fly attack and phenolic content.  相似文献   

3.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

4.
Besides affecting the oil's sensorial characteristics, the presence of herbs and spices has an impact on the nutritional value of the flavored oils. The aim of the study was to develop a new product based on the phenol-enrichment of a virgin olive oil with both its own phenolic compounds (secoiridoid derivatives) plus additional complementary phenols from thyme (flavonoids). We studied the effect of the addition of phenolic extracts (olive cake and thyme) on phenolic composition, oxidative stability, antioxidant activity, and bitter sensory attribute of olive oils. Results showed that flavonoids from thyme appeared to have higher transference ratios (average 89.7%) from the phenolic extract to oil, whereas secoiridoids from olive presented lower transference ratios (average 35.3%). The bitter sensory attribute of the phenol-enriched oils diminished with an increase of the concentration of phenols from thyme, which might denote an improvement in the consumer acceptance.  相似文献   

5.
The aim of this study was to characterize antioxidant activities of phenolic compounds that appear in olive pulp and olive oils using both radical scavenging and antioxidant activity tests. Antiradical and antioxidant activities of olive pulp and olive oil phenolic compounds were due mainly to the presence of a 3,4-dihydroxy moiety linked to an aromatic ring, and the effect depended on the polarity of the phenolic compound. Glucosides and more complex phenolics exhibited higher antioxidant activities toward oxidation of liposomes, whereas in bulk lipids aglycons were more potent antioxidants with the exception of oleuropein. Lignans acted as antioxidants only in liposomes, which could partly be due to their chelating activity, because liposome oxidation was initiated by cupric acetate. The antioxidant activity of virgin olive oil is principally due to the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA), a secoiridoid derivative (peak RT 36, structure unidentified), and luteolin.  相似文献   

6.
The initial stability of virgin olive oil depends on various factors, among which are the variety and the degree of fruit ripeness. The former, which genetically determines the composition of the olive and its oil, also marks, to some extent, its stability. However, oil stability changes as the olive ripens, so it is obvious that the degree of ripeness is an important factor. The oils were obtained by the Abencor system. Acidity, peroxide index, UV absorption at 232 and 270 nm, sensory analysis, fatty acid composition, tocopherols, phenolic compounds, orthodiphenolic compounds, sterols, pigments, and oxidative stability were determined, and the results were analyzed statistically. During ripening there was a decrease in all of the parameters studied except linoleic acid, Delta-5-avenasterol, and oil content, which increased. Virgin oils showed very good correlation between stability and the concentrations of total phenols, o-diphenols, tocopherols, chlorophyll pigments and carotenoids, linoleic and linolenic acids, total sterols, beta-sitosterol, and Delta-5-avenasterol.  相似文献   

7.
In vitro studies show that some individual minor polar phenolic compounds (MPC) present in virgin olive oil prevent oxidation of human low-density lipoproteins (LDL), but few data are available on the antioxidant effect of whole oil extract. Thus, whole virgin olive extracts were studied to determine whether they maintain the antioxidant activity and whether this last is linked to MPC composition of a single virgin oil. Using HPLC-DAD the MPC content in Taggiasca and Seggianese virgin olive oils was measured. Taggiasca oil was less rich in total MPC (208.5 mg/L) than Seggianese oil (441.9 mg/L). In addition, the major compounds of Taggiasca oil were lignan derivatives, whereas the major compounds in Seggianese oils were secoiridoid derivatives. Moreover, Taggiasca oil was practically free of 5-hydroxytyrosol and 5-hydroxytyrosol derivatives, deacetoxy-oleuropein aglycone and oleuropein aglycone. The antioxidant activity of the oils on human LDL was evaluated by measuring malondialdehyde and conjugate diene generation induced by copper ions. In both tests, the oil extracts dose-dependently reduced malondialdehyde and conjugate diene generation. Moreover, antioxidant potency correlated with total MPC; thus, Seggianese extract was more active. The two oils differed quantitatively and qualitatively, and these differences influenced their biological activities; thus clinical trials focused on studying the effects of olive oils should specify the oils used.  相似文献   

8.
Polyphenols are an important functional minor component of virgin olive oils that are responsible for the key sensory characteristics of bitterness, pungency, and astringency. Polyphenols were isolated from virgin olive oils by using liquid/liquid extraction and then separated by using reverse phase HPLC followed by fraction collection. The sensory qualities of the isolated polyphenols were evaluated, and almost all fractions containing polyphenols were described as bitter and astringent. However, the fraction containing deacetoxy-ligstroside aglycon produced a strong burning pungent sensation at the back of the throat. In contrast, the fraction containing the analogous deacetoxy-oleuropein aglycon, at an equivalent concentration, produced only a slight burning/numbing sensation, which was perceived more on the tongue. No other polyphenol fractions from the analyzed oils produced the intense burning sensation; thus, deacetoxy-ligstroside aglycon is the polyphenol responsible for the majority of the burning pungent sensation found in pungent extra virgin olive oils.  相似文献   

9.
The main change found in the phenolic composition of virgin olive oils of Arbequina, Hojiblanca, and Picual varieties during storage in darkness at 30 degrees C was the hydrolysis of the secoiridoid aglycons. This reaction gave rise to an increase in the free phenolics hydroxytyrosol and tyrosol in the oil. Filtration of oil and acidity influenced the hydrolysis to a large extent. Thus, the addition of commercial oleic acid to Hojiblanca and Picual oils increased the hydrolysis rate of the secoiridoid aglycons. In contrast, the concentration of lignans 1-acetoxypinoresinol and pinoresinol remained constant during storage. It must also be stressed that the total molar concentration of the phenolic compounds analyzed in the oils changed slightly (<20% reduction) after one year of storage, which is important from a nutritional point of view. However, the transformation of the secoiridoid aglycons into free phenolics may have consequences on oil taste and antioxidant capacity.  相似文献   

10.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

11.
The total content of phenolic compounds (TAP) in 29 different monocultivar olive oil samples from France (Aglandau and Tanche) and Spain (Cornicabra, Picual, and Verdial) was assessed by the colorimetric Folin-Ciocalteu method. Also, individual phenolic compounds were determined and quantified by liquid chromatography coupled to mass spectrometry (LC-MS). The French olive oil samples had a lower TAP compared to Spanish samples. The quantity of individual phenolics was similar except for pinoresinol, which was lower in the French olive oil samples. TAP moderately correlated to the sum of quantified compounds (r = 0.64 and p < 0.01) Partial least-squares (PLS) regression analysis emphasized the importance of hydroxytyrosol and the total amount of quantified phenolic compounds by LC-MS in the prediction of the total amount of phenolic compounds as determined by the Folin-Ciocalteu method. The amount of alpha-tocopherol was generally different among the cultivars (Tanche > Picual > Verdial > Aglandau > Cornicabra). Of all quantified phenolic compounds in French olive oil samples, only luteolin correlated well to the altitude of the olive orchards (r = 0.76, p < 0.01).  相似文献   

12.
This study reports the HPLC profiles of phenolic compounds of virgin olive oils obtained from young olive trees (Olea europaea L. cv. Arbequina) and how the application of a linear irrigation strategy affected these. Hydroxytyrosol, tyrosol, vanillic acid, vanillin, 4-(acetoxyethyl)-1,2-dihydroxybenzene, p-coumaric acid, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, lignans, and the oleuropein aglycon were found in all the oils. Hydroxytyrosol, tyrosol, vanillic acid, and p-coumaric acid contents in the oils were unaffected by linear irrigation. The concentration of lignans was lower in the oils from the least irrigated treatment and the concentration of vanillin increased as the amount of irrigation water applied to olive trees increased. However, 4-(acetoxyethyl)-1,2-dihydroxybenzene, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, and the oleuropein aglycon, all of them hydroxyphenyl derivatives, decreased as the level of irrigation water increased. The latter three compounds represented the most considerable part of the phenolic fraction of the oils and they were shown to be correlated to the oxidative stability, the bitter index (K(225)), and the bitter, pungent, and sweet sensory attributes. Linear irrigation strategy changed the profile of the oil phenolic compounds and, therefore, changed both the organoleptic properties and the antioxidant capacity of the product.  相似文献   

13.
A new spectrophotometric assay for the determination of the polyphenolic content of olive oil is presented. It is a substrate-recycling assay for phenolic compounds that employs tyrosinase in the presence of excess NADH. The reaction of various phenols with the enzyme produces an o-quinone, which is detected by recycling between reactions with the enzyme and NADH. The method offers some advantages over the classical methods employed to determine the polyphenolic content of olive oil, that is, ease and reproducibility of the analysis, highly increased sensitivity, and selectivity toward phenolic compounds. The amount of total polyphenols was determined in virgin olive oils both with the Folin-Ciocalteu reagent and with the proposed enzymatic method. The results suggest a better estimation of the polyphenol content, as compared with the colorimetric method. This has to be attributed to the different reactivities of the two methods toward phenols and catechols. Finally, the enzymatic method demonstrates that there is a linear relationship between the olive oil phenolic content and the antioxidative capacity of oil extracts.  相似文献   

14.
The effects of UV radiation on the chemical and sensory characteristics of virgin olive oils (cv. Arbequina and Picual) were assessed. Even small doses of UV radiation induced oxidation of the virgin olive oil samples. Total phenols and fatty acids contents decreased during the process as well as the intensity of the bitter and fruity sensory attributes, while the intensity of the rancid sensory attribute notably increased. Acetaldehyde, 2-butenal, 2-pentenal, octane, octanal, hexanal, nonanal, and 2-decenal were the volatile compounds most affected, showing an important increase during the irradiation process. Nonanal, hexanal, and pentanal showed high correlation with the rancid sensory attribute (90%, 86%, and 86%, respectively). 2-Decenal and nonanal concentrations allowed us to predict the alteration level of the samples by mean of multiple Ridge regression.  相似文献   

15.
The phenolic composition of "lampante olive oil", "crude olive pomace oil", and "second centrifugation olive oil" was characterized by high-performance liquid chromatography with UV, fluorescence, and mass spectrometry detection. The phenolic profile of these olive oils intended for refining was rather similar to that previously reported for virgin olive oil. However, a new compound was found in these oils, which is mainly responsible of their foul odor. It was identified as 4-ethylphenol by comparison of its UV and mass spectra with those of a commercial standard. Although 4-ethylphenol was discovered in all oils intended for refining, its presence was particularly significant in "second centrifugation olive oils", its concentration increasing with time of olive paste storage. Similar trends were observed for hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and catechol, the concentration of these substances reaching values of up to 600 mg/kg of oil, which makes their recovery for food, cosmetic, or pharmaceutical purposes attractive.  相似文献   

16.
Virgin olive oils were subjected to simulated common domestic processing, including frying, microwave heating, and boiling with water in a pressure cooker. The impact of these processes on polyphenol content and physicochemical characteristics of oils was assessed. Thermal oxidation of oils at 180 degrees C caused a significant decrease in hydroxytyrosol- and tyrosol-like substances. In contrast, oils heated for 25 h still retained a high proportion of the lignans 1-acetoxypinoresinol and pinoresinol. Thermal oxidation also resulted in a rapid degradation of alpha-tocopherol and the glyceridic fraction of oils. Microwave heating of oils for 10 min caused only minor losses in polyphenols, and the oil degradation was lower than that in thermoxidation assays. Again, lignans were the least affected polyphenols and did not change during microwave heating. Boiling a mixture of virgin olive oil and water in a pressure cooker for 30 min provoked the hydrolysis of the secoiridoid aglycons and the diffusion of the free phenolics hydroxytyrosol and tyrosol from the oil to the water phase. Losses of polyphenols were detected only at pH lower than 6. Moreover, alpha-tocopherol and the glyceridic fraction of oils were not modified during this process. It is worth noting that all the heating methods assayed resulted in more severe polyphenols losses and oil degradation for Arbequina than for Picual oil, which could be related to the lower content in polyunsaturated fatty acids of the latter olive cultivar. These findings may be relevant to the choice of cooking method and olive oil cultivar to increase the intake of olive polyphenols.  相似文献   

17.
The sensory and health properties of virgin olive oil (VOO) are highly related to its volatile and phenolic composition. Oxygen control in the pastes during malaxation may be a new technological parameter to regulate enzymatic activities, such as polyphenoloxidase, peroxidase, and lipoxygenase, which affect the phenolic and volatile composition of VOO. In this work, we monitored CO2 and O2 concentrations during industrial-scale olive paste malaxation with various initial O2 concentrations within the malaxer headspace. Results show that the O2 concentration in the malaxer headspace did not affect CO2 production during processing, whereas a strong influence was observed on the changes of the phenolic composition of olive pastes and VOOs, with high correlation coefficient for the total phenols (R = 0.94), especially for oleuropein and demethyloleuropein derivatives (R = 0.81). In contrast, aroma production during malaxation was minimally affected by the O2 concentration in the malaxer headspace.  相似文献   

18.
Bitter taste, an organoleptic characteristic of virgin olive oil, has been related to phenolic compound composition. The usual method to assess this attribute is by a sensorial panel of tasters, while in the laboratory; methods based on physicochemical properties have been assayed as K225, the most widely used one. However, a direct determination of bitterness in virgin olive oil is useful for quality-control purposes. The proposed method is supported by the observable spectral change undergone by the compounds responsible for bitterness as pH varied. This measurement was carried out directly in the oil, without prior isolation of bitter analytes. The difference of absorbance between alkaline and neutral medium showed a highly significant correlation (r = 0.988, p < 0.0001) with the conventional parameter (K225). The method was rapid, required a small sample, allowed direct determination of bitterness in virgin olive oil, and could be easily automated.  相似文献   

19.
The influence of deep frying, mimicked by 20 heating cycles at 180 °C (each cycle from ambient temperature to 180 °C maintained for 5 min), on the unsaponifiable fraction of vegetable edible oils represented by three characteristic families of compounds (namely, phytosterols, aliphatic alcohols, and triterpenic compounds) has been studied. The target oils were extra virgin olive oil (with intrinsic content of phenolic antioxidants), refined sunflower oil enriched with antioxidant phenolic compounds isolated from olive pomace, refined sunflower oil enriched with an autoxidation inhibitor (dimethylpolysiloxane), and refined sunflower oil without enrichment. Monitoring of the target analytes as a function of both heating cycle and the presence of natural antioxidants was also evaluated by comparison of the profiles after each heating cycle. Identification and quantitation of the target compounds were performed by gas cromatography-mass spectrometry in single ion monitoring mode. Analysis of the heated oils revealed that the addition of natural antioxidants could be an excellent strategy to decrease degradation of lipidic components of the unsaponifiable fraction with the consequent improvement of stability.  相似文献   

20.
The HPLC phenolic profile of virgin olive oils obtained from young olive trees (Arbequina cv.) grown under different deficit irrigation strategies was studied. Deficit irrigation (RDI) did not affect all the phenolic compounds in the same way. Lignans, vanillic acid, vanillin, and the unknown phenolic compound named P24 increased in the oils from the most irrigated treatments. The secoiridoid derivatives and the unknown phenolic compound named P19 increased in the oils from the most stressed irrigation treatments. The period of growth where a water stress significantly affects the phenolic profile of oils was between pit hardening and the first stages of fruit growth and oil accumulation, independently of the water applied during the previous period to harvest. The phenolic profile and those parameters related to phenol content, oxidative stability, and the bitter index were significantly affected only in the most severe RDI strategies. Other strategies produced important savings in irrigation requirements and an increase in the water use efficiency without noticeably affecting the phenolic profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号