首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In the interest of developing a simple and rapid ultraweak chemiluminescence assay for assessing the superoxide (O(2)(-))-scavenging activities of various aqueous extracts of food constituents, a specific and stable O(2)(-)-generating system was sought. Reported herein is the obtainment for the first time of a specific and stable O(2)(-)-generating system consisting of methylglyoxal (MG), a reactive 2-oxo aldehyde and arginine, which has been shown to produce much steadier lucigenin-based chemiluminesence (LBCL) than the conventional xanthine/xanthine oxidase system running in parallel and monitoring by an ultraweak chemiluminescence analyzer. Upon mixing of MG and arginine in a phosphate-buffered saline solution, pH 7.4, steady, time-dependent increments of LBCL can be visually observed. The plateau of LBCL can be reached in approximately 10 min and retained in a steadily stable state thereafter without fluctuation for the next 15 min. The lucigenin-based LBCL generation was shown to be specific since it could be effectively inhibited by active bovine SOD, but not by heat-inactivated enzyme or catalase. Conversely, the xanthine/xanthine oxidase system can merely produce a LBCL peak rapidly but decay instantaneously. To illustrate the application of the proposed method for assessing the O(2)(-)-scavenging ability of various food extracts, namely, Prunus mume (A), Lilum lancifolium (B), Creataegus pinnatifida (C), Tremella fuciformis (D), Fortunella margarita (E), and Scutellaria baicalensis (F), we used the following protocol: 12 min after monitoring of LBCL, 1 mg/mL of each of the test compounds was added to the assay system and various degrees of sudden drop of LBCL values were observed, indicating differences in O(2)(-)-scavenging abilities exerted by these food extracts that can be visually compared. Consequently, the percentages of inhibition of LBCL versus the concentrations of a test compound can be constructed. It follows that the concentration needed to inhibit 50% of LBCL (IC(50)) of a test compound can be extrapolated from the curve. Using this approach, we were able to obtain the IC(50) values of various compounds to be tested and the order of inhibitory efficiency of the above-mentioned food extracts was ranked, being A > B > C > D > E > F, respectively.  相似文献   

2.
With the availability of an ultraweak chemiluminescence analyzer, it is possible to monitor the production of a specific oxygen-derived reactive species, such as hydroxyl radical ((*)OH), whenever a suitable chemiluminescent probe is obtainable. Reported herein is the development of a rapid and specific method for detecting (*)OH production using a specific probe, indoxyl-beta-glucuronide (IBG), a low-level chemiluminescence emitter. Using the Fenton reagent as a source of (*)OH, it was shown that IBG could elicit a very strong intensity of chemiluminescence (CL) (16200 +/- 200 photon counts/s). Conversely, IBG was shown to be insensitive to either superoxide radical or hydrogen peroxide with their CL intensities nearly close to the background values (25 +/- 5 and 180 +/- 20 photon counts/s, respectively). Furthermore, it was also shown that this IBG-based CL production could be effectively quenched by the addition of (*)OH scavengers such as sodium salicylate, dimethyl sulfoxide, and penicillamine to the assay system. Taken together, these data indicate that IBG is a specific CL probe suitable for monitoring the production of (*)OH. This system demonstrated inhibitory activities of various aqueous extracts of food constituents on the CL of hydroxyl radicals generated by Fenton's reagents with the order of scavenging efficiencies being Prunus mume > Cordyceps sinensin > Lilium lancifolium > Astragalus membranceus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号