首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 164 毫秒
1.
利用掖478为轮回亲本、齐319为供体亲本构建的染色体片段代换系CL137为父本,与掖478杂交构建近等基因系F2分离群体,根据齐319、掖478重测序数据开发在双亲中具有多态性的Indel分子标记,在两个环境中对控制玉米株高的10号染色体QTL进行定位。结果表明,2017年的株高表型将QTL定位到标记mk8-bnlg1655之间,位于83.86~85.34 Mb(B73 RefGen_v3)的1.5 Mb区间,表型贡献率为7.57%;2018年株高表型将株高QTL定位到标记mk5-bnlg1655之间,位于82.76~85.34 Mb的2.5 Mb区间,表型贡献率为5.75%。同时检测发现,该QTL主要以加性效应为主,显性效应较小。通过对所定位的QTL重合区间内的基因进行功能注释,预测可能控制株高的候选基因,为后续精细定位第10号染色体株高QTL以及探索候选基因功能机制提供研究基础。  相似文献   

2.
以掖478和齐319构建染色体片段代换系群体(CSSLs),分析石家庄、新乡、昌平、顺义4个地点的雄穗主轴长(TL)和雄穗分枝数(TBN)的表型鉴定数据。结果表明,在2个以上环境中共检测到27个雄穗主轴长QTL,分布在1、2、3、4、5、7、8、9和10号染色体上,其中,1号染色体上雄穗主轴长QTL位点最多;共检测到23个雄穗分枝数QTL,分别位于1、2、4、6、7、8和10号染色体,其中,1号染色体上雄穗分枝数QTL位点最多。验证了北方春玉米环境稳定的3个雄穗主轴长QTL和10个雄穗分枝数QTL,发掘到黄淮海环境特异的5个雄穗主轴长QTL和3个雄穗分枝数QTL。在4个环境下均能检测到5个雄穗主轴长QTL(qTL1-3、qTL1-4、qTL2-1、qTL3和qTL4-2)和1个雄穗分枝数QTL(qTBN1-7),可为控制雄穗主要性状的基因克隆和机理解析提供参考。  相似文献   

3.
玉米优良自交系单片段代换系的构建   总被引:5,自引:1,他引:4  
以优良自交系昌7-2为供体亲本、自交系9801为受体亲本,通过杂交、回交和供体染色体片段的SSR标记跟踪,构建以9801为遗传背景的昌7-2染色体单片段代换系群体,分析供体基因组成分在单片段代换系构建过程中的变化趋势。结果表明,共获得了74个以9801为背景的供体单片段代换系,片段长度为2.38~181.46 cM,平均长度为33.39 cM,导入片段总长为2 470.53 cM,染色体覆盖率为29%。  相似文献   

4.
为了给小麦重要农艺性状的QTL精细定位及克隆奠定基础,对14个从Am3/莱州953(轮回亲本)BC4F4代选出的性状表现与莱州953有明显差异的导入系的8个农艺性状进行了分析,结果表明,每个导入系有2~7个性状与莱州953差异显著,在每一个性状上都有对农艺性状具有正向效应的位点.利用143对在亲本之间具有多态性的SSR标记对导入系含有的供体片段进行了检测,其中54对引物在14个导入系中检测到了供体片段,每一个导入系中检测到3~15个纯合供体片段及0~4个杂合片段,占受体基因组的1.7%~14.2%,平均为7.48%.利用其中10个导入系与轮回亲本莱州953杂交的F2群体进行了单片段代换系的选择,从10个导入系的F2中检测到40个供体片段,并从F2群体中选出了22个单片段代换系.这些导入系及其单片段代换系可用于有益的QTL的发掘、QTL精细定位与作图等研究.  相似文献   

5.
利用普通玉米自交系丹232与爆裂玉米自交系N04为亲本构建了含有259个家系的重组近交系(RILs)群体,对株高、穗位高、顶高、顶高/株高、茎粗、穗上位叶片数、叶面积、雄花分枝数、雄穗长9个植株性状初步分析。结果表明:RILs群体各性状分离明显,且基本符合正态分布,表现为数量性状遗传特点,是一个较为理想的作图群体。但RILs系内各性状都存在不同程度的变异,需要增加自交代数。  相似文献   

6.
利用普通玉米自交系丹232与爆裂玉米自交系N04为亲本构建了含有259个家系的重组近交系(RILs)群体,对株高、穗位高、顶高、顶高/株高、茎粗、穗上位叶片数、叶面积、雄花分枝数、雄穗长9个植株性状初步分析。结果表明:RILs群体各性状分离明显,且基本符合正态分布,表现为数量性状遗传特点,是一个较为理想的作图群体。但RILs系内各性状都存在不同程度的变异,需要增加自交代数。  相似文献   

7.
对沈单7号、沈单10、沈玉21等10个玉米杂交种及其亲本自交系的雄穗分枝数、雄穗长度和重量等性状进行研究。方差分析和相关分析表明,杂交种及其亲本自交系雄穗分枝数和雄穗长度对肥力的反应差异不显著,雄穗重量对肥力的反应极显著,肥力与亲本自交系间雄穗重量的交互作用差异显著。在不追施氮肥的条件下,雄穗分枝数和雄穗重量与子粒产量间呈显著负相关,雄穗重量与雄穗分枝数间呈极显著正相关;在追施氮肥的条件下,雄穗分枝数与产量间呈显著负相关,雄穗重量与雄穗分枝数间呈极显著正相关。  相似文献   

8.
以玉米自交系ZNC442和SCML0849为亲本构建的131份F2:3家系为材料,结合简化基因组测序(GBS)的基因型鉴定结果与该群体在多环境下的株型评价数据,利用完备区间作图法对株高、穗位高、叶夹角、穗上叶片数、雄穗分枝数、雄穗主轴长等株型相关性状进行QTL定位。结果表明,2个环境下共检测到98个株型相关QTL,分布于10条染色体上。结合已公开的QTL定位信息,利用生物信息学分析筛选出5个控制株型相关性状的候选基因。Zm00001eb037290、Zm00001eb033500、Zm00001eb033600、Zm00001eb033610与株高相关,其编码的PosF21转录因子、E3泛素蛋白连接酶ATL6、丝氨酸/精氨酸丰富剪接因子和MYB102转录因子,分别通过参与赤霉素的合成、调节C/N反应、调控细胞分裂素变化等过程调控节间生长发育与植株大小。  相似文献   

9.
普通×爆裂玉米自交系F7重组近交系植株性状初步分析   总被引:2,自引:0,他引:2  
利用普通玉米自交系丹232与爆裂玉米自交系N04为亲本构建了含有259个家系的重组近交系(RILs)群体,对株高、穗位高、顶高、顶高/株高、茎粗、穗上位叶片数、叶面积、雄花分枝数、雄穗长9个植株性状初步分析.结果表明:RILs群体各性状分离明显,且基本符合正态分布,表现为数量性状遗传特点,是一个较为理想的作图群体.但RILs系内各性状都存在不同程度的变异,需要增加自交代数.  相似文献   

10.
玉米分子遗传图谱的构建   总被引:7,自引:0,他引:7       下载免费PDF全文
以R15(抗)和Ye478(感)为亲本配制F2分离群体并以该群体为作图群体。利用778对SSR引物对亲本R15、Ye478之间的多态性进行了检测,筛选出159对多态性SSR引物用于F2群体分析。利用这159对(20.4%)多态性标记构建玉米的遗传连锁图谱,其中有9个SSR标记没连锁上。其余150个标记分布于玉米的10条染色体上,覆盖玉米基因组1775.7cM,标记间平均距离为11.8cM。  相似文献   

11.
基于近等基因导入系发掘玉米抗甘蔗花叶病毒主效基因   总被引:5,自引:1,他引:5  
利用玉米自交系掖478与中自01构建近等基因导入系群体(BC4F2),通过田间人工接种甘蔗花叶病毒鉴定获得抗病植株。采用38个SSR标记分析抗病株基因型,通过连锁不平衡分析,在玉米第3和6染色体上发掘3个主效抗病QTL。第3染色体上的QTL置信区间为26.1cM-phi053-5cM;第6染色体上的QTL置信区间分别为1.2cM-bnlg161和5.3cM-bnlg1538-7cM。建立了基于近等基因导入系发掘玉米抗甘蔗花叶病毒主效QTL技术,获得了一批含有抗病毒QTL的近等基因导入系,为抗病育种提供了信息和材料。  相似文献   

12.
课题组前期以玉米自交系郑58为轮回亲本,以昌7-2为供体亲本,通过分子标记辅助选择获得染色体单片段代换系Z12和W16。Z12和W16在bin2.07区域均含有1个来源于昌7-2的染色体片段,株高均显著高于轮回亲本郑58。利用郑58和Z12为材料构建F2分离群体,基于重测序和混合分离分析(BSA)策略,将株高主效QTL qPH2.4定位于第2染色体13.95 Mb(201 457 953~215 022 157 bp)的区域内。利用在目标区间内筛选出的20对多态性分子标记对包含743个单株的郑58×Z12 F2分离群体和包含1 720个单株的郑58×W16 F2分离群体进行基因型分析,结合田间株高数据进行QTL定位,将株高主效QTL qPH2.4定位在InDel分子标记ph-18和ph-19之间,区间的遗传距离为0.57 cM,物理距离为626 kb。参考B73基因组(RefGen_v4)注释信息,该区间内存在17个注释基因,其中,包含可以调控油菜素内酯信号的基因Zm00001d006677。  相似文献   

13.
玉米产量及相关性状的QTL分析   总被引:3,自引:2,他引:1  
以玉米自交系吉846和掖3189为亲本,组建含有280个F7家系的RILs群体为试验材料,构建含117个SSR位点和50个AFLP位点的遗传连锁图谱,图谱总长度2 638.3cM,标记间平均距离15.8cM。采用复合区间作图法对10个产量及相关性状进行QTL分析,共检测到108个QTL,其中4个QTL相对稳定表达。结果表明,第1染色体上控制株高的qPh-2-1,位于标记P66M89315-P37M70169之间,可提供的表型贡献率为5.72%~8.40%;第3染色体上控制穗位高的qEh-3-1,位于标记P66M47273-umc1400之间,可提供的表型贡献率为17.01%~21.06%,为主效QTL;第4染色体上控制穗长的qEl-4-2,位于标记umc1058-umc2289之间,可提供的表型贡献率为4.42%~6.72%;第8染色体上控制穗粗的qEd-8-1,位于标记bnlg240-umc1268之间,可提供的表型贡献率为5.33%~9.57%。Bin2.00-2.01、Bin2.04-2.05、Bin3.05-3.09、Bin7.01-7.02和Bin8.05-8.07这5个区域可能是产量及相关性状QTL的密集区域。  相似文献   

14.
《Field Crops Research》2006,96(1):106-112
Improvement of rice (Oryza sativa L.) plant type is a major breeding objective. This study aimed to precisely localize and characterize key genomic regions for plant type using near-isogenic individuals. Selfing of partially heterozygous F5 recombinant inbred (RI) individuals [parental varieties Milyang 23 (M23) and Akihikari (AK)] developed heterogeneous inbred families (HIFs) composed of 108 and 93 F7 progenies, which segregated at molecular marker loci on the long arms of chromosomes 4 and 6, respectively. The progeny lines (F8) were evaluated for traits composing plant type in Los Baños, Philippines, to locate quantitative trait loci (QTLs) using interval mapping and to evaluate the effects of the QTL region by phenotypic comparison between the genotypes. QTLs for the traits were detected in 17 cM across XNpb12 on chromosome 6. The M23 homozygote for the QTL region resulted in a >7% increase and decrease in plant length and tiller number at heading, respectively, relative to the AK homozygote. Consequently, culm length (CL) and traits determining flag-leaf and panicle sizes increased 5–56% by the M23 homozygote, together with a 15% decrease in panicle number. For a QTL region detected in 6 cM across XNpb235 on chromosome 4, the AK homozygote had similar effects on these traits, except CL. The directions and magnitudes of their effects agreed with those previously estimated in the RI line population, thus increasing confidence in primary QTL analyses for plant type. Analyzing the HIFs validated and characterized the two QTL regions greatly involved in determining varietal plant type from an early growth stage to maturity, providing information useful for empirical and marker-assisted breeding towards rice improvement.  相似文献   

15.
针对PH6WC、PH4CV、B20、D1279及PH6WC×PH4CV、PH6WC×B20、PH6WC×D1279、D1279×PH6WC鉴定试验进行雄穗分枝数差异分析,PH6WC×D1279(通育189)组建6世代群体(P1、P2、F1、B1、B2、F2),运用主-多基因混合模型遗传分析方法对雄穗分枝数遗传进行分析。结果表明,通育189雄穗分枝数存在细胞质遗传效应,F1雄穗分枝数平均优势为28.57%~132.41%;雄穗分枝数遗传模型为2对主基因加、显、上+多基因加、显混合模型,2对主基因为正向完全显性,主基因上位性效应>显性效应>加性效应;主基因效应是多基因效应的41.25倍,主基因遗传率为27.58%~88.87%,多基因遗传率为0~41.78%。  相似文献   

16.
Cassava, Manihot esculenta Crantz subsp. Esculenta was a major food crop across Asia and Africa. The crop was a highly heterozygous perennial woody shrub cultivated from stem cuttings. Cassava improvement for starchy tuberous roots requires about 5-6 years from F1 hybrid seed germination to the selection of superior genotypes. Early selection with DNA markers could increase the number of elite genotypes identified. The aim here was to identify DNA markers associated with loci underlying plant and first branch height. In this study, 640 SSR primer pairs were used to screen for polymorphisms in two parental lines, cv. ‘Huaybong60’ (female) and cv. ‘Hanatee’ (male). There were 235 informative polymorphic markers used to genotype 100 individuals of an F1 mapping population. Genotype data was analyzed by JoinMap® version 3.0 software in order to construct a genetic linkage map. The map consisted of 156 linked SSR markers distributed across 25 linkage groups. The total length of the map was 845.2 cM (Kosambi cM) with 6.2 loci per linkage group, and an average distance between markers of 7.9 cM. Plant and first branch height of stem cuttings from the F1 mapping population were collected from individual lines planted in 2007-2009. Quantitative Trait Loci (QTL) underlying these traits were identified using mapQTL®/version 4.0. A total of seven QTL placed on four linkage groups were found for plant height. Of these, one major QTL was discovered on linkage group 2 near the marker SSRY155 with 17.9% of phenotypic variation explained (PVE). For first branch height, five QTL located on five linkage groups were identified. The two major QTL were located on linkage groups 2, and 20 at the loci SSRY323 and SSRY236 with 23.5% and 22.6% PVE, respectively. The QTL for plant and first branch height will serve as useful molecular markers in a cassava breeding program and may allow identification of the underlying genes in future.  相似文献   

17.
玉米主要营养品质性状的QTL定位   总被引:1,自引:0,他引:1  
以LX00-6×E28的278个F2:3家系为作图群体,通过SSR标记利用MAPMAKER/EXP3.0和Mapdraw 2.0构建遗传连锁图谱.该连锁图覆盖玉米基因组1 508.1 cM,包含124个标记,相邻两标记的平均距离为12.2 cM.利用QTLMaper2.5软件,结合主要品质性状的检测结果,运用复合区间作图法,以LOD=2.0对玉米主要品质性状进行全基因组QTLs扫描,检测到两个与淀粉含量相关的QTL位点,分别位于第1、8条染色体上,表现为部分显性效应和加性效应,并在第1条染色体上检测到1个与油分含量相关的位点,表现为加性效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号