首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对当前温室环境监测中存在的信号遮挡物多、监测范围大、管理不便等问题,设计一种基于无线传感器网络的温室环境信息远程监测系统。无线传感器网络采用433MHz射频进行信息传输,无线传感器节点和汇聚节点分别采用MSP430F149和LPC2478作为微控制器,实现温室环境信息的实时采集、信息汇聚和数据融合。系统采用星型网络拓扑结构,通过定时休眠、传感器掉电控制等方法来减少能量消耗,并通过基于CSMA/CA算法的无线传输协议,避免了节点间信息传输冲突,保证了传输成功率。无线传感器节点通信性能测试结果表明:使用10dBm射频功率时,距地表1.5m节点的有效通信距离为192m;在无太阳能充电且节点工作周期为30min18s的情况下,无线传感器节点生命周期理论值为98d。温室环境信息远程监测应用结果表明,该系统具有低功耗、高稳定性等优点,节点平均丢包率仅为1.1%。  相似文献   

2.
[目的]实时监测水产养殖中的水环境,提高水产品产量。[方法]采用无线传感器网络的ZigBee技术设计可以实时采集、显示和处理水产养殖中水体的温度、溶解氧含量和pH等水环境因素,适合养殖环境中水水质的监测系统。[结果]监测系统传输稳定,传输的数据正确率达98%以上,达到预期要求。[结论]基于ZigBee技术的水产养殖环境监测系统可以实现数字化养殖,提高水产品产量。  相似文献   

3.
介绍了一种新兴的短距离、低速率无线网络技术ZigBee,并对其网络体系和拓扑结构进行了分析,重点对基于ZigBee技术的无线传感器网络及其在水产养殖中的应用进行了探讨,提出了养殖水质在线监测系统应用ZigBee无线传感器网络的实现方案。  相似文献   

4.
分析了水产养殖水质监测现状,针对国内水产养殖无线传感器网络网关设计存在的问题,提出并实现了一种能与多个服务器通信与能量自我补给的网关,包括处理器模块、射频模块、GPRS模块和充电模块.根据水产养殖环境特点,设计一种适合大面积部署与减少跳数的组网方法.在此网关和组网方法的基础上对水产养殖环境进行组网试验,组网实验丢包率为3.38%.  相似文献   

5.
为实现精确的水质环境监控,设计了基于ZigBee无线传感器网络的水产养殖环境因子监控系统。该系统对测量的水质环境因子采用自适应加权融合算法和模糊综合评判法进行两级数据的融合分析,判断当前的水质环境是否有利于养殖对象的生长并由判断结果给出控制决策。实验数据和分析结果表明,该系统具有较强的容错性,可弥补系统单因子单阀值控制的不足,提高了系统的精确性和可靠性。  相似文献   

6.
为实现精确的水质环境监控,设计了基于ZigBee无线传感器网络的水产养殖环境因子监控系统。该系统对测量的水质环境因子采用自适应加权融合算法和模糊综合评判法进行两级数据的融合分析,判断当前的水质环境是否有利于养殖对象的生长并由判断结果给出控制决策。实验数据和分析结果表明,该系统具有较强的容错性,可弥补系统单因子单阀值控制的不足,提高了系统的精确性和可靠性。  相似文献   

7.
基于无线传感器网络设计了用于监测建筑物结构的健康检测系统,设计了地无线传感器网络节点.由传感器节点收集建筑物振动加速度值的数据变化,然后利用无线通信模块将处理后的数据发送出去.按照设计好的路由、数据融合算法将数据准确地传送给汇聚节点,进而由汇聚节点转发给基站,实现对建筑物结构健康的无线实时监测.无线传输避免了长距离布线所带来的成本高、施工困难的缺点.  相似文献   

8.
张青春  郁徐来 《湖北农业科学》2014,53(20):4973-4976
为实现对工厂化淡水鱼类养殖环境参数的监测,采用ZigBee技术和CC2530核心芯片,利用太阳电池板提供能源,设计了一种将温度、氧含量、pH测量于一体的智能无线传感器节点.通过ZigbemPC网络平台,构建了无线传感器网络系统,实现了淡水鱼类养殖环境参数实时监测.结果表明,无线传感器网络能够准确测量温度、氧含量、pH等鱼类养殖环境参数,系统性能稳定、可靠,具有一定的实用性和推广应用价值.  相似文献   

9.
社会的进步与发展,带动单片机技术惠及至农业生产生活的各个领域,用单片机作为生产生活的辅助帮手也已经成为一种趋势。构建了以Arduino控制板为核心的水产养殖监测系统,该系统可以对实时水产养殖进行监测,具有灵敏度高、功耗低等优点,满足了当前水产养殖中对水质监测的需求。  相似文献   

10.
基于LoRa无线通信的水产养殖监测系统设计及应用   总被引:1,自引:0,他引:1  
目的 针对大面积水产养殖环境覆盖面积广、多种水体环境监测因素综合影响的特点,设计一种可同时监测水体溶解氧、盐度、pH、氨氮和温度5种参数的设备。设备可通过远距离无线通信技术实现水质数据远距离无线传输,并在上位机端可视化平台动态显示监测环境因素。方法 数据采集终端的控制核心采用TI公司具有16位总线的MSP430F149型微控制器。水质信息通过各传感器采集获取,氨氮采集终端采用量程为0~10 mg/L的NHN-202A型氨氮传感器;溶解氧与温度采集终端采用溶解氧量程为0~20 mg/L、温度量程为0~40 ℃的RDO-206型传感器;pH采集终端采用量程为0~14的PHG-200型传感器;盐度采集终端采用量程为0~0.5%的DDM-202I/C型传感器。服务器端采用Linux系统搭建,通过JetBrains下的IntelliJ IDEA开发工具搭建,使用的编程语言为Java。线上平台采用SpringMVC框架,数据库连接通过HiBernate对象关系映射框架连接操作。监测平台通过Tomcat部署在Linux系统上,数据展示界面通过调用可视化库Echarts实现。结果 系统实际所测水体溶解氧含量绝对误差为0.12 mg/L,盐度的绝对误差为0.001%,pH的绝对误差为0.017,温度的绝对误差为0.05 ℃。单一采集设备功耗测试中,5 200 mA电池可持续为终端设备供电28.5 h,且线上系统运行稳定。结论 本研究设备LoRa无线通信技术与上位机端数据可视化平台相结合的设计增强了远距离水质监测数据采集的可靠性,解决了动态实时测量中监测数据长距离传输问题及数据同步上位机端平台展示问题。  相似文献   

11.
[目的]设计一套基于无线传感器网络(Wireless sensor networks,WSN)的蛋鸡活动量实时监测系统,为通过蛋鸡活动量变化确定蛋鸡健康状态提供技术支持.[方法]系统的终端节点以ADXL345加速度传感器对蛋鸡活动量进行采集,以CC2530芯片为核心对数据进行处理与无线传输,并针对蛋鸡独特的体型设计背包式佩戴带.系统选用低功耗ZigBee通讯协议,上位机使用Visual Studio 2012和SQL Server 2008对监控管理端进行设计.[结果]监测系统能满足在长×宽×高为50.0 m×6.0 m×3.5 m鸡舍内的通讯要求,测试期间平均丢包率仅为0.19%.5羽试验蛋鸡佩戴终端节点后6 h内有一定程度的应激反应;监测24 h后仅1号和4号蛋鸡分别丢失3和11个数据包.通过对比监控图像,监测系统对蛋鸡的活动、产蛋及睡眠状态下产生的加速度均能进行准确地采集与显示.[建议]对终端节点体积、佩戴带材料进行进一步优化,提高佩戴舒适性;加强网络通信稳定性,获得更加准确的活动量数据;增加分类识别算法实现对蛋鸡所患疾病的判别、报警,以实现对疫情进行预防.  相似文献   

12.
宋文波  王健 《湖北农业科学》2020,59(10):145-149
针对煤矿地质灾害频发、破坏力强、监测难度大等问题,提出了基于WSN的煤矿地质灾害监测系统。结果表明,该系统采用Zigbee模块构建无线传感器网络,搭配MPU-9250(九轴运动感测组件)、土壤温湿度传感器、雨量传感器等设备,能够有效监测滑坡、地面塌陷、地裂缝等灾害。无线网络数据可以通过NB-IOT网关传输到系统监测平台,方便对煤矿区域远程实时监测。该系统具有高性价比、低迟延、易扩展以及准确性高等特点,可以在煤矿地质灾害监测方面发挥较大作用。  相似文献   

13.
【目的】在"互联网+农业"的大背景下,实现对猪舍中的环境因子、图片信息采集等实时有效的监测和控制,提高系统计算能力、数据存储能力,提升系统可维护性、安全性,降低运维成本。【方法】采用MSP430F149单片机和CC1101无线传输模块采集环境信息,实现Socket、Http等网络通信,使底层设备具有网络通信功能。综合利用阿里云(Elastic compute service,ECS)技术,将系统部署在云端,通过可编程逻辑控制器(Programmable logic controller,PLC)等电气装置监控猪舍。【结果】在Web端和手机终端上能够实时监测环境信息、监控猪舍画面,可从上位机发指令远程调节猪舍内小环境。【结论】该系统稳定可靠,服务器部署在云端可降低生产管理成本,保证数据不丢失,从而提高生产养殖的综合效益。  相似文献   

14.
针对蛋鸡生产过程中,鸡群体重传统监测方式费时费力、不能实时获取体重数据、监测过程易出现鸡群应激等问题,设计并搭建了蛋鸡体重实时监测系统。蛋鸡体重实时监测系统以新型栖架离地立体养殖系统中的栖杆为载体,在其两端安装质量传感器,采用LabVIEW编写蛋鸡体重实时监测程序对质量传感器的数据进行采集与处理。对蛋鸡体重实时监测系统进行测试,结果表明:1)系统对栖杆上鸡只数量识别的总体准确率达98%;2)在光期系统所监测的鸡群平均体重的变化幅度较大,与当日人工称量得到的鸡群平均体重的最大差值为292g。在暗期开始后1h系统监测的鸡群平均体重趋于稳定,且稳定值接近当日人工监测的鸡群平均体重;3)选取每日22:00—23:00系统所监测的鸡群平均体重的平均值作为当日鸡群平均体重,系统监测鸡群平均体重结果与当日人工监测结果的平均误差为±109g,最大误差±152g,相对误差2.6%~8.1%。  相似文献   

15.
基于无线传感器网络的智能温室实时监控和辅助决策系统设计采用数据采集、数据处理和信息发布三层结构设计。数据采集子系统由无线微处理器和传感器节点组成,基于ZigBee协议构建;数据处理部分负责数据预处理和实时辅助决策,引入生长模型进行生长管理,辅助决策模块根据温室实时环境和植物当前的生长状态进行智能监测,并以Web、移动终端等多种方式向管理者提供生产决策信息;信息发布采用Web网站形式,集成种植信息管理、生长信息管理、技术对策支持、历史数据查询、统计分析等功能。  相似文献   

16.
基于WSN与嵌入式组态软件的智能灌溉系统   总被引:1,自引:0,他引:1  
设计了一个基于nRF905、STC89C52和MCGS触摸屏的无线传感器网络智能灌溉系统;并初步实现了对光照、湿温度、土壤水分等传感器的数据采集和传输;介绍系统使用的拓扑结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号