首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Seed-yield stability, frequently associated with drought-tolerance strategies, is one of the main breeding objectives for the development of crops for semi-arid mediterranean-type environments. Since breeding of new industrial crops targeted for arid lands is not appreciably different from that of traditional crops, higher yield is achieved by increased harvest-index, at the cost of losing traits associated with drought-tolerance and reduced seed-yield stability. Using Lesquerella as a model we compared selected and unselected accessions of annual (L. gracilis and L. angustifolia) and perennial (L. pinetorum and L. mendocina) genotypes grown in field experiments in Patagonia, Argentina. Our objective was to assess the effects of breeding for increased seed-yield on traits related to the main characteristics that define the most common ideotype for mediterranean-type environments: early vigor, conservative growth strategy post-anthesis and reserves storage. Our specific question was: Have any of the attributes associated with seed-yield stability been indirectly selected during the domestication process? Our results show that these characteristics were reduced or lost, in selected lines compared to their wild relatives. Early vigor was lower in selected accessions and was associated mainly with reduced relative growth rate and CO2 assimilation. During the reproductive period the growth strategy was changed by selection towards a non-conservative and more acquisitive resource use strategy. Traits associated with this strategy were linked to higher water use efficiency and growth capacity (higher CO2 assimilation rate, specific leaf area, and leaf allocation), but also with loss of structural adaptation to low resource environments (i.e. low specific leaf area), an increase in nutrient and water demands, and reduced nutrient use efficiency. Carbohydrates accumulation pre-anthesis was lower in selected accessions of all four species, and also, just in perennials we found lower reserves storage post-anthesis. These changes in the pattern of carbohydrates accumulation could be associated to lower seed-yield stability due to the loss of buffer capacity linked with the use of pre-anthesis reserves for seed filling. On the other hand, in perennial species lower reserves storage after seed harvest could reduce plant longevity and survival. We conclude that indirect changes occurred during the preliminary domestication of both annual and perennial species of Lesquerella used in our experiment. These changes were against those required if these species were to be developed as crops for semi-arid, mediterranean environments and should result in low seed-yield stability.  相似文献   

2.
The development of perennial industrial crops could contribute to increase agriculture sustainability and yield stability in arid environments. Since perennial plants allocate resources preferentially to perpetuation and to structural and functional characters that provide drought tolerance, they tend to have lower reproductive output (yield) than their congeneric annuals. Four species of Lesquerella native to arid regions were evaluated to understand the relationships between reproduction, drought tolerance, and their association with the plant's life span. We assessed the following set of characters (defined as plant strategies): phenology, gas exchange, specific leaf area, leaf area ratio, total biomass and biomass allocation. Annual (Lesquerella gracilis and Lesquerella angustifolia) and perennial (Lesquerella mendocina and Lesquerella pinetorum) species were compared under water limiting conditions. Within this set of species differences in structural and functional characters were observed. The annual, L. gracilis showed a plant strategy characterized by high reproductive output, harvest index (HI) and specific leaf area (SLA). L. mendocina (perennial), produced more total biomass, but had a low reproductive output, and also showed characters that provide drought tolerance (high allocation to roots-root mass ratio (RMR), and storage-total non structural carbohydrates (TNC) and low SLA). The annual L. angustifolia and the perennial L. pinetorum had intermediate plant strategies (i.e. intermediate values of traits typically related with annual or perennial life span). In the case of L. pinetorum we found some traits common to L. mendocina: long vegetative period, high biomass, CO2 assimilation rate (A), and water use efficiency (WUE), and low SLA. The high reproductive output in L. pinetorum was a result of both, higher total biomass and longer growing season compared to the annuals, and of higher HI in relation to the other perennial. These differences in plant strategies among perennial Lesquerella show that there are different combinations of traits that could be used as criteria for the selection of a perennial crop in programs of domestication for Patagonia and others arid lands.  相似文献   

3.
Although the annual Lesquerella fendleri is the prime candidate for the development of a lesquerolic rich oil-seed crop, within this genus there are other species available to breeders, some of which are perennials. However, the feasibility of a perennial crop of Lesquerella is not clear because increases in seed-yield tend to reduce perennially. The objective of this work was to determine the effect of the source-sink ratio on seed yield and yield components in annual and perennial species of Lesquerella. We predicted that (i) due to differences in allocation patterns of annual and perennial species, seed-yield and yield components in perennials would be less affected by the source-sink ratio (higher stability) than in annuals and (ii) since seed-weight has been found to be the most stable yield component in other crops and their wild relatives, most of the variation in seed-yield as a consequence of source-sink ratios would be determined by changes in the number fruits per plant and the number of seeds per fruit. A field experiment was carried out in Chubut, Patagonia Argentina in a complete randomized design with four treatments to examine source-sink relationships in four species of Lesquerella, two annuals (L. angustifolia, L. gracilis) and two perennials (L. pinetorum, L. mendocina). We used either shading (reduction of source) or removal of flower-buds (reduction of sink) to develop a range of source-sink relationships. All four species showed a similar yield response to source-sink variations. Seed-yield was lower in shaded plants, although the timing of shading influenced this response. Flower-bud removal resulted in a significant increase in seed-yield. Seed-yield differences among source-sink treatments were best explained by changes in the number of fruits per plant than by the number of seeds per fruit. Source-sink manipulations had no affect on seed weight. Flower-bud removal significantly increased the number of fruits per plant in all species except for L. mendocina. The number of seeds per fruits increased only in L. pinetorum. Our results show that carbon stored during pre-anthesis plays a key role in reproduction both in annual and perennial Lesquerella. The increase in the seed-yield components found with bud removal could potentially reduce longevity in perennial species. The results also show that the number of fruits per plant is a good proxy for seed-yield within a species.  相似文献   

4.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

5.
Control of exotic plant species invading the native prairie relies on our understanding of the eco‐physiological mechanisms responsible for the spread of these species as they compete with native plants for soil resources. We used a greenhouse pot experiment to study vegetative biomass allocation in response to drought stress in two exotic grass species, Kentucky bluegrass (Poa pratensis L.) and smooth brome (Bromus inermis Leyss), and two native species, western wheatgrass (Pascopyrum smithii (Rydb.) A. Löve) and green needlegrass (Stipa viridula Trin.). The experiment was conducted over 3 months in 2010 and again in 2011 in a factorial design of four species and two drought treatments. The proportional data of biomass allocation to shoots, roots, rhizomes and crowns (shoot base) of grass seedlings were analysed by both the nonparametric Mann–Whitney U‐test on the original data and one‐way anova on the arcsine‐transformed data. Our data suggest a clear distinction between the two invasive and two native species in potential competitiveness in soil resource use, with the two exotic species having higher biomass allocation to roots than the two native species and the native species having a higher biomass allocation to crowns than the two exotic species. It is interesting to note that the strongly rhizomatous smooth brome did not produce rhizomes in the first season's growth, regardless of the water stress level. The effect of drought stress on biomass allocation manifested itself more on rhizomes or crowns than on roots or shoots of the four studied grass species, with the effects species‐specific in nature.  相似文献   

6.
Castor (Ricinus communis L.) is an economically important plant for production of industrial oil as well as used as primary food plant for rearing of eri silkworm, Samia ricini (Donovan). The biomass yield of eight selected castor accessions were studied to find out a promising castor genotype in terms of growth and biomass yield, nutrient status, disease and pest resistant together with eri silkworm rearing performance. Among the selected accessions, Ac03 and Ac04 yielded an average of 344.70 g (±88.05) and 334.50 g (±60.62) of leaf biomass/plant respectively (mean 324.62 g; n = 8) and the yield was stable over the years (2007-10). However, in late winter, leaf blight and leaf spot disease were reported in all the castor accessions together with the infestation of hairy caterpillar (4.00-5.33%). The silkworm rearing performances were also better in Ac03 in terms of shell weight (0.50 ± 0.07 g; mean 0.42 g; n = 8), shell ratio (15.5%) and effective rate of rearing i.e. ERR (85.67). ERR of eri silkworm was influenced by biochemical compositions of leaves of different castor accessions. The weight of larvae and cocoons were significantly influenced by nitrogen and crude protein content of the foliages. Altogether, Ac03 and Ac04 castor genotypes were found to be better in terms of agronomical and yield attributing traits together with silkworm rearing performance.  相似文献   

7.
Phosphorus (P) deficiency is a major constraint for maize production in many low-input agroecosystems. This study was conducted to evaluate genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with the adaptation of maize landraces to a P-deficient Andisol in two locations in the Central Mexican highlands. Two hundred and forty-two accessions from the Purhepecha Plateau, Michoacan were grown in Ponzomaran with low (23 kg P2O5 ha−1) and high (97 kg P2O5 ha−1) P fertilization under rain-fed field conditions, and subsequently a subset of 50 contrasting accessions were planted in the succeeding crop cycle in Bonilla. Accessions differed greatly in plant growth, root morphology and P efficiency defined as growth with suboptimal P availability. The accessions were divided into 3 categories of P efficiency using principal component and cluster analyses, and 4 categories according to the retained principal component and their relative weight for each genotype in combination with growth or yield potential. The distribution of accessions among three phosphorus efficiency classes was stable across locations. Phosphorus-efficient accessions had greater biomass, root to shoot ratio, nodal rooting, nodal root laterals, and nodal root hair density and length of nodal root main axis, and first-order laterals under P deficiency. Biomass allocation to roots, as quantified by the allometric partitioning coefficient (K) was not altered by P availability in the efficient accessions, but inefficient accessions had a lower K under low P conditions. Accessions with enhanced nodal rooting and laterals had greater growth under low P. Dense root hairs on nodal root main axes and first-order laterals conferred a marked benefit under low P, as evidenced by increased plant biomass. Late maturity improved growth and yield under low P. These results indicate that landraces of the Central Mexican highlands exhibit variation for several root traits that may be useful for genetic improvement of P efficiency in maize.  相似文献   

8.
The objectives of this study are to propose a model for explaining the genotypic and environmental variation in above-ground biomass growth via photosynthesis and respiration processes from transplanting to heading for different rice genotypes grown under a wide range of environments, and to identify the physiological traits associated with genotypic difference in the biomass growth based on model analysis. Cross-locational experiments were conducted with nine different rice genotypes at eight locations in Asia covering a wide climate range under irrigated conditions with sufficient nitrogen application. The crop growth rate observed during the period from transplanting to heading ranged from 3.4 to 19.4 g m−2 d−1 among the genotypes grown at the eight locations. About one-third of the data sets were utilized for model calibration and the remaining sets were used for model validation. An above-ground biomass growth model was developed by integrating processes of single leaf photosynthesis as a function of stomatal conductance and leaf nitrogen content, growth and maintenance respiration and crop development. To rigorously examine the validity of this process model, measured data were input as external variables for leaf area index (LAI) development and leaf nitrogen content per unit leaf area. The model well explained the observed dynamics in above-ground biomass growth (R2 = 0.95*** for validation dataset) of nine rice genotypes grown under a variety of environments in Asia. The model simulation suggested that genotypic difference in the biomass growth was closely related to the difference in the stomatal conductance and leaf nitrogen content, as well as to LAI. This paper proposes the model structure, algorithms and all parameter values contained in the model, and discuss its effectiveness as a component of a more comprehensive model for simulating dynamics of biomass growth, LAI development and nitrogen uptake as a function of genotypic coefficients and environments.  相似文献   

9.
Oryza species differ in their degree of perenniality, which has implications for patterns of carbon distribution in the plant. Interspecific F1 hybrids of Oryza sativa × Oryza rufipogon were compared with their parental lines to assess whether they differed in assimilate storage and distribution at flowering and after maturity of the first cohort of panicles. The F1 hybrids varied widely in plant type, but on average they had small plant size and low main tiller weights at anthesis, similar to O. rufipogon, and had intermediate tiller numbers and final single plant weights similar to cultivated rice. O. rufipogon had higher concentrations of starch in stems at anthesis, while interspecific hybrids exhibited comparatively low leaf, stem + sheath, and root sugar concentrations. Near anthesis, substantial 14C label remained in the source (flag) leaf in O. sativa and F1 hybrids, while in O. rufipogon more label was exported to sink tissues. The hybrids partitioned more 14C label to panicles than did cultivated rice and less to leaf sheaths than either parent. Hybrids that had previously been identified as having above-average carbon exchange rates (CER) did not differ consistently from the low-CER hybrids in carbohydrate dynamics. The cultivated species itself maintains some perennial features, and changes in these traits might increase productivity.  相似文献   

10.
Evening primrose (Oenothera biennis L.) has become a subject of agricultural interest because of the potential market for γ-linolenic acid, which is useful in medicine and nutrition. O. biennis has good potential for agricultural production, but due to its indeterminate growth it can not be harvested at once as seed are formed and ripened heterogeneously. As a result there is high seed wastage due to shattering. Field experiments were carried out to verify the influence of the harvest time (early, middle and late) and harvest method (conventional harvest method, defoliation by herbicide and defoliation by flame) on the seed yield, seed yield components, oil content, fatty acid composition and protein content of the O. biennis L. cv. “Anothera”. From the results of the three harvest times in the autumn-sown experiment, a significant influence on seed yield was observed in the late harvest. Of all the three harvest times in the spring experiments, not showed any significant influence on seed yield. However, the harvest method did produce a significant influence on seed yield in the first spring experiment. Different harvest times did not have significant influence on oil content except the second spring trial. The harvest method led to significant differences on the oil content when the plants were sown in autumn. In the second spring experiment seed protein content was significantly influenced by harvest time. In all experiments, the content of γ-linolenic acid (GLA) was influenced by harvest time. Based on obtained results, it can be concluded that 75–80 and 100 days after flowering could be recommended as harvest times for spring and autumn-sown O. biennis L. cv. “Anothera” in Germany, respectively. Desiccation as a harvest technique in some cases tended to influence on seed yield, PDM, SDM, oil content, stearic acid, oleic acid and linoleic acid. Defoliation by herbicide was more effective than those of flame in our experiments.  相似文献   

11.
Early interferences among plants within a maize stand determine the establishment of extreme plant types (i.e. dominant and dominated individuals). The development of these hierarchies takes place well before [from the seventh leaf stage (V7) onwards] the start of the critical period for kernel set (i.e. a 30-day period centered in silking). Kernel number per plant (KNP) is significantly related to plant growth rate around silking (PGRS) and biomass partitioning to the ear during this period. Previous evidence has demonstrated that at high stand densities, extreme plant types may exhibit similar PGRS values but set different KNP. We tested the hypothesis that early established plant hierarchies differ in biomass allocation to the ears during the period around silking. Two hybrids of contrasting tolerance to crowding (DK752 and DK765 as the tolerant and the intolerant hybrid, respectively) were cropped at different interplant competition intensities (6, 12, 12 pl m−2 thinned to 6 pl m−2 at V9 and 6 pl m−2 shading from V9 onwards) during 2003/2004 and 2004/2005 in Argentina. For all treatments, the coefficient of variation (CV) of plant biomass increased from V3 (ca. 1.2%) to V9-10 (ca. 22%). From V7 onwards, plant growth rate of dominant individuals was higher (P < 0.05) than that of the dominated plants. Hence, dominant plants exhibited higher (P < 0.05) PGRS (ca. 4.5 g pl day−1) than dominated individuals (ca. 3.7 g pl day−1). As PGRS declined in response to increased plant population density (ca. 5.1 and 2.8 for 6 and 12 pl m−2, respectively), biomass partitioning to the ear was reduced (ca. 0.44 and 0.33 for 6 and 12 pl m−2, respectively). For all treatments, however, dominant plants exhibited a greater biomass partitioning to the ear (ca. 0.41) than the dominated individuals (ca. 0.36). Consequently, the former were the individuals with the highest ear growth rate (ca. 1.9 and 1.4 g per ear per day for the dominant and dominated plant, respectively) and KNP (ca. 623 and 490 kernels per plant for the dominant and dominated plant, respectively) of the stand. We identified three traits on DK765 related to the low tolerance to high-density stress of this genotype: (i) a higher plant-to-plant variability (CV ca. 26% and 19%, for DK765 and DK752, respectively), (ii) a lower biomass partitioning to the ear around silking (ca. 0.26 and 0.39 for DK765 and DK752, respectively), and (iii) a higher response rate of KNP to ear growth rate around silking (ca. 370–738 and 360–414 kernels per g, for DK765 and DK752, respectively). Hence, as stand density was increased, KNP of DK765 was sharply reduced, especially in the dominated individuals of the stand.  相似文献   

12.
《Field Crops Research》2001,69(2):143-149
Grindelia chiloensis (Asteraceae) is a shrub native to Patagonia, Argentina, and can accumulate as much as 25% resin (on a dry weight basis) in leaves. The resin can be used in applications similar to those of pine resins. Reductions in available radiation are thought to decrease both the plant C:N ratio and resin production. The objective of this study was to assess the effect of light availability on the allocation of photoassimilates to biomass, resin (terpenes) and carbohydrates in G. chiloensis. To examine this, three radiation treatments were applied to field grown plants: (i) 100% radiation (full-sun), (ii) 50% radiation and (iii) 25% photon flux density radiation. Changes in available radiation resulted in significant changes in above ground biomass accumulation, carbon based secondary metabolites (resin), non-structural carbohydrate (TNC) content, and relative growth rate (RGR). At low radiation levels, above ground biomass accumulation, RGR, resin, TNC content and CO2 assimilation rate were highly reduced (from 150 to 80 g per plant, from 16 to 7%, and from 30.2 to 8.6 g per plant, for biomass, resin content, and resin production, respectively). The responses to low radiation found in G. chiloensis would limit productivity and the distribution of this species when grown under cultivation.  相似文献   

13.
Miscanthus species are highly productive with low inputs and are excellent candidates for bioenergy feedstock production. A field experiment was conducted to characterize phenotypic differences in selected clones generated from interspecific hybrids of Miscanthus sinensis × Miscanthus sacchariflorus and intraspecific hybrids within M. sinensis. The field experiment was planted in plots of 20 m2 at a density of 1 plant m−2 in three randomized blocks. The trial was monitored for 3 years for traits important to biomass production including plant height, tiller density, tuft diameter and shoot diameter. ANOVA showed significant genotypic variation in these traits once the stand was 2 years old. This study shows that tillering and tuft diameter in years 1 and 2 are the most important traits influencing biomass yield, but over 3 years when the highest yielding potential is reached, tillering and tuft diameter have the highest correlation with biomass yield. These results identifying high-yielding Miscanthus clones will be utilized in our plant improvement program.  相似文献   

14.
Field experiments under low-input farming conditions were conducted in South West Germany (lhinger Hof) and North Switzerland (Wil) in 2004 and 2005 aimed at optimizing nitrogen rate and seed density for the production of the newly introduced safflower (Carthamus tinctorius L.). The experiments were laid out in a four-replicated-split plot design with three nitrogen fertilizer rates (0, 40, 80 kg/ha) as main plots and cultivars (Sabina, Saffire, BS-62915) and seed densities (50, 100, 150 seeds/rn2) randomized in split plots. It was shown that many traits responded differentially across environments to rate of nitrogen and seed density. Application of 40 and 80 kg N/ha did not significantly affect most of the investigated traits. At Ihinger Hof, the total nitrogen fertilizer needed to maximize safflower yield was estimated to be 86 kg N/ha. At Wil, residual soil nitrogen alone resulted in satisfactory seed yield when safflower followed a crop fertilized at a commercial rate. The nitrogen rate × seed density interaction was only significant for seed yield and Alternaria leaf spot disease. Nitrogen rates provided significant increases in seed yield at high seed density compared to low seed density. Seed density did not reveal any significant variation in seed yield, oil content, and oil yield. On average, the low seed density produced substantially higher numbers of heads/plant and seeds/plant compared to medium and high densities. These results demonstrate the ability of safflower to use residual soil nitrogen efficiently and to compensate for low plant density.  相似文献   

15.
This study reports the measurement of grain density and grain volume of barley grains using a gas displacement technique. The densities of single kernels were determined and were highly correlated with measurements of larger quantities of kernels (10, 25 or 800). Grain weight and volume were significantly correlated when measuring 800 kernels (0.99, P < 0.001), 25 kernels (0.99, P < 0.001), 10 kernels (0.98, P < 0.001), and a single kernel (0.97, P < 0.001), and the standard deviations were low for the five replicate measurements.The relationship between grain density and endosperm hardness was significantly correlated (0.57, P < 0.001), as was the relationship between grain density and test weight (0.70, P < 0.001). Grain density was negatively correlated to moisture content (−0.65, P < 0.001), but not protein content. Endosperm hardness was positively correlated to protein content (0.45, P < 0.001), but not moisture content. Although grain density and endosperm hardness are interdependent physico-chemical traits, different grain components appear to interact independently. Gas displacement technique could be applied to determine the distribution of grain density within a sample. Therefore, this technique will assist breeding programs to identify genomic regions associated with these physico-chemical traits, and produce superior malting and feed quality through uniform varieties with inherently denser, plumper grain.  相似文献   

16.
In a two-year (2005–2006) study conducted at three sites in central (Larissa) and northern (Alexandroupolis, Thessaloniki) Greece, we aimed to investigate the relationships between seedcotton yield and lint quality with leaf physiological traits (carbon isotope discrimination-Δ, ash content and K concentration). Eighteen lines with their original cultivars (Christina, Flora, Corona) were tested under the ultra-low density of 1.2 plants m−2. In combined data over years, a significant, positive correlation between seedcotton yield and Δ or ash content was found only in the driest and lowest-yielding site (Larissa), indicating that genotypes that keep their stomata open and in turn exhibit the highest Δ values, had an advantage in such environments. In pooled data from the two most productive sites (Thessaloniki and Alexandroupolis), which had the highest Δ and ash content values, evidenced a negative correlation between seedcotton yield and both physiological traits. Seedcotton yield was negatively related with leaf K concentration in Larissa and Alexandroupolis but no significant relationship was found in Thessaloniki where leaf K concentration was below adequacy limit. Δ was positively related with ash content which suggests that the latter could be a putative surrogate of Δ. Negative correlation between Δ and leaf K concentration was found in two out of three sites (Larissa and Thessaloniki) as well as between ash content and K in one site (Larissa). These findings suggest that K accumulation in leaves is not just a passive procedure via transpiration stream. Significant, linear relationships of each physiological trait between sites showed that genotypic ranking was constant in the three sites, an indication of heritability. Ash content had the highest significance levels and correlation coefficients. Even though significant genotypic differentiation was observed for the three physiological and two of the lint quality traits (i.e. fibre length, micronaire) determined in Alexandroupolis, only a weak, negative relationship between fibre length and leaf K concentration was evident. In sum, leaf physiological traits (Δ, ash content and K concentration) could not be reliably used for yield selection in cotton owing to site-specific effects, which prejudice the yield–physiological traits relationship. Ash content–Δ relationship merits further research in order the former to be established as a putative surrogate of Δ.  相似文献   

17.
Evaluation of seed yield, morphological variability and nutritional quality of 27 germplasm lines of Chenopodium quinoa and 2 lines of C. berlandieri subsp. nuttalliae was carried out in subtropical North Indian conditions over a 2-year period. Seed yield ranged from 0.32 to 9.83 t/ha, higher yields being shown by four Chilean, two US, one Argentinian and one Bolivian line. Two lines of C. berlandieri subsp. nuttalliae exhibited high values for most of the morphological traits but were low yielding. Seed protein among various lines ranged from 12.55 to 21.02% with an average of 16.22 ± 0.47%. Seed carotenoid was in the range of 1.69–5.52 mg/kg, while leaf carotenoid was much higher and ranged from 230.23 to 669.57 mg/kg. Genetic gain as percent of mean was highest for dry weight/plant, followed by seed yield and inflorescence length. All morphological traits except days to flowering, days to maturity and inflorescence length exhibited significant positive association with seed yield. The association of leaf carotenoid with total chlorophyll and seed carotenoid was positive and highly significant. The path analysis revealed that 1000 seed weight had highest positive direct relationship with seed yield (1.057), followed by total chlorophyll (0.559) and branches/plant (0.520). Traits showing high negative direct effect on seed yield were leaf carotenoid (−0.749), seed size (−0.678) and days to flowering (−0.377). Total chlorophyll exerted strongest direct positive effect (0.722) on harvest index, followed by seed yield (0.505) and seed protein (0.245).  相似文献   

18.
Previous investigations have detected a directional trend in the normalized difference vegetation index (NDVI) of pastures around scattered paddock trees and identified shade from the tree as the most likely causal factor. This study uses a field experiment to quantify the effect of varying levels of shade on the above-ground biomass and NDVI of three grass species native to Australia (Microlaena stipoides, C3, shade tolerant; Austrodanthonia richardsonii, C3, prefers full sunlight, and Chloris ventricosa, C4, prefers full sunlight) in different seasons. The study demonstrates that shade had little influence on the above-ground biomass of C3 species but significantly reduced biomass in the C4 species. Until early winter, the NDVI of each species was generally significantly higher in all shaded treatments than in the no-shade treatment. This suggests that shaded plants retained a higher proportion of green biomass and/or changed leaf shape, increased leaf area and chlorophyll content. Regardless, although not proven in this experiment, it is likely shade prolonged the retention of green plant material into mid to late winter. Overall, this experiment explains the directional trends in NDVI around scattered trees found in previous work and suggests that shade from scattered trees prolongs green pasture production in a range of native grass species, without loss of C3 pasture biomass.  相似文献   

19.
Boldo (Peumus boldus Mol.) is a medicinal plant native to the central zone of Chile and part of the sclerophyll forest. More than 2000 tons of dried leaves exported annually are wild collected. To develop a cultivation system that supports sustainable production of boldo leaves, we have studied growth and harvest of boldo under different light and soil water conditions. The leaf yield per plant as well as the alkaloid and essential oil content were the same for plants grown under shade and for plants exposed to full sun. The only difference between the shaded and the full sun plants was a higher percentage of stem in the harvested product of shade grown plants. This result would permit the intercropping of boldo in forest plantations without affecting the leaf yield and medicinal quality. The excellent adaptation to dry conditions was confirmed, as the different treatments of soil water led to similar leaf yields and plant heights. Plants submitted to water stress produced fewer but longer shoots and contained less essential oil. None of the treatments except water stress affected the medicinal quality requirements of alkaloid or essential oil concentration in the leaves. Wild collected leaves are inexpensive because of low production costs. To be able to compete with wild supplied leaves in the international market, we have evaluated high density plantings as a way to lower costs of a cultivated product by mechanizing harvest. High planting densities led to loweryielding individuals, but leaf yield per area increased. Plant height and the percentage of leaves in the harvested product was the same for densities of 8- and 16 plants m−2. The leaves produced by cultivated boldo generally fulfill the requirements described in the European Pharmacopoeia. We conclude that boldo can be successfully cultivated under the described cultivation conditions.  相似文献   

20.
Crop physiological traits of Liangyoupeijiu, a “super” hybrid rice variety recently bred in China, were compared with those of Takanari and Nipponbare in 2003 and 2004 in Kyoto, Japan. Liangyoupeijiu showed a significantly higher grain yield than Nipponbare in both years, and achieved a grain yield of 11.8 t ha−1 in 2004, which is the highest yield observed under environmental conditions in Kyoto. Liangyoupeijiu had longer growth duration and larger leaf area duration (LAD) before heading, causing larger biomass accumulation before heading than the other two varieties. Liangyoupeijiu had a large number of grains and translocated a large amount of carbohydrates from the vegetative organ to the panicle during the grain filling period. The three yield components measured were panicle weight at heading (P0), the amount of carbohydrates translocated from the leaf and stem to the panicle during the grain filling period (ΔT), and the newly assimilated carbohydrates during grain filling (ΔW). It was found that the sum of P0 and ΔT were strongly correlated with grain yield when all the data (n = 8) were combined (r = 0.876**). However, there was no significant difference in the radiation use efficiency (RUE) of the whole growth period between Liangyoupeijiu and Nipponbare for both years. Even though the growth duration was shorter, Takanari, an indica/japonica cross-bred variety, showed a similar yield to Liangyoupeijiu in both years. The mean RUE of the whole growth period was significantly higher in Takanari, 1.60 and 1.64 g MJ−1 in 2003 and 2004, respectively, than in Liangyoupeijiu, which had a RUE of 1.46 and 1.52 g MJ−1 in 2003 and 2004, respectively. The high grain yield of Takanari was mainly due to its high RUE compared with Liangyoupeijiu and its large P0 and ΔT. Our result showed that the high grain yield of Liangyoupeijiu was due to its large biomass accumulation before heading, which resulted from its large LAD rather than its RUE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号