首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new varieties of interspecific hybrids of Passiflora have been developed from the cross between P. gardneri versus P. gibertii, both registered under the Passiflora Society International. Twelve putative hybrids were analyzed. Hybridization was confirmed using RAPD and SSR markers. Primer UBC11 (5′-CCGGCCTTAC-3′) generated informative bands. Primer SSR Pe75 has amplified species-specific fragments and a heterozygote status was observed with two parent bands 300 and 350 bp. The molecular markers generated have been analyzed for the presence or absence of specific informative bands. Based on the morphological characterization, we have identified two hybrid varieties: P. ‘Gabriela’ and P. ‘Bella’. P. ‘Gabriela’ produced flowers in bluish tones, bluish petals on the adaxial and abaxial faces, light blue sepals on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. P. ‘Bella’ produced flowers in lilac tones, intense lilac petals on the adaxial and abaxial faces, dark lilac sepals with whitish edges on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. The cytogenetic analysis verified that the hybrids have the same chromosomal number as the parents (2n = 18); the formation of bivalents between the homeologous chromosomes (n = 9) was observad, leading to regular meiosis, which allows the sexual reproduction and use of these hybrids in breeding programs.  相似文献   

2.
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula.  相似文献   

3.
In the present study, in vitro propagation of tribal endemic medicinal plant, Andrographis lineata has been established using mature nodal explants. High frequency of regeneration (91.4%) was achieved on MS medium containing BA (3.0 mg L–1) along with IAA (0.2 mg L–1). Strikingly, irrespective of the season and collection period, we observed axillary flower induction and fruit formation from the above in vitro cultures supplemented with BA and NAA. Transition from the vegetative to the reproductive phase occurred within 2 months of culture, and importantly was influenced by factors such as sucrose and cytokinins. In vitro-regenerated flowers were morphologically identical to in vivo flowers. Furthermore, our scanning electron microscopic studies revealed that pollen external morphology of both in vitro and in vivo flowers were similar. The flowers self-fertilized and produced fruits in vitro. Elongated shoots rooted well on half-strength MS basal medium, and were successfully acclimatized to the garden conditions. Altogether, our established protocol can be utilized in plant breeding for the purpose of ex situ conservation, quick flowering, and fruit set.  相似文献   

4.
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A m -genome) and 5 (24%) Triticum urartu (A u -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.  相似文献   

5.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

6.
Forsythia suspensa and F.Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars.  相似文献   

7.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars.  相似文献   

8.
Phytophthora root rot caused by Phytophthora drechsleri Tucker is one of the most devastating sugar beet diseases in tropical areas. To identify genetic resources resistant to this disease, an aggressive isolate of P. drechsleri was selected. Then, a screening method was optimized based on the standard scoring scales of 1–9 (1: no symptoms, 9: complete plant death). Finally, 19 sugar beet lines, three cultivars, and 14 accessions of the wild species Beta vulgaris subsp. maritima, B. macrocarpa, B. procumbens, and B. webbiana were evaluated for resistance to the most aggressive isolate of P. drechsleri by using the optimized method (inoculum included 20 g of rice seed together with superficial wound creation). The isolates of P. drechsleri had significant variation in aggressiveness, and Kv10 was the most aggressive isolate on the susceptible variety Rasoul. The lines O.T.201-15, SP85303-0 (resistant check), and S2-24.P.107 had the lowest disease index with scores of 3.09, 3.13, and 3.27 respectively; they were categorized into the resistant group. The interaction between isolates and genotypes was not significant, which indicated the same response of each genotype to different isolates. Investigating the resistance of different generations of sugar beet revealed that progeny selection would be an effective method for increasing the resistance level of breeding materials to P. drechsleri. Among the wild species, the accession 9402 belonging to B. macrocarpa and the accession 7234 of B. vulgaris subsp. maritima had the lowest disease index (2.29 and 2.60, respectively) and were categorized into the resistant group.  相似文献   

9.
Association mapping was conducted to explore favorable alleles of the chlorophyll-related non-yellow coloring 1 (NYC1) gene under light and dark using an association panel of 146 maize inbred lines. A total of 14 polymorphic sites were identified to be significantly associated with at least one of the chlorophyll-related traits at the seedling stage. Four single nucleotide polymorphisms (SNPs) (S320, S2951, S3901, and S3355) from the NYC1 gene were respectively strongly associated with chlorophyll b (chlb), the ratio of chlorophyll a to chlorophyll b (chl_ratio), chlorophyll a degradation (chla_deg), and total chlorophyll degradation (total_chl_deg). SNPs S320 (C/A) in exon 1, and S2951 (A/G) in intron 8 was related to chlb, with 6.01 and 8.89% of phenotypic variation under light treatment, respectively. Under dark treatment, SNP S3901 (C/T), located in 3′ untranslated region (3′UTR), was associated with chl_ratio, explaining 7.01% of the observed phenotypic variation, whereas SNP S3355 (C/G) in intron 9 explained 6.48 and 5.18% of phenotypic variations in chla_deg and total_chl_deg, respectively. Taken together, these results indicated that the NYC1 gene plays an important role in chlorophyll content and other related traits, and different sites act on chlorophyll metabolism under different light intensities in maize seedlings. Furthermore, these findings improve our understanding of the genetic basis of chlorophyll metabolism under different light conditions.  相似文献   

10.
The genus Psidium includes important fruit crops. However, there are very few studies focusing on its reproductive biology, which limits the establishment of breeding programs. The present work investigated the reproductive biology of Psidium guajava and Psidium cattleianum in terms of compatibility of crossings between these two species aiming at interspecific hybridization because the latter species is an important source of resistance against the nematode Meloidogyne enterolobii. Several types of crosses were performed to understand the reproductive biology of these species, including the compatibility of intra- and interspecific crossings, using assisted in vivo germination of pollen grains on the stigma. In addition, the in vitro germination of both Psidium species was studied at different stages of fruit development to rescue young seeds to improve the chances of obtaining the hybrids. No fruits of 270 pollinations were obtained on guava buds at the pre-anthesis stage, regardless of the source of the pollen grain and the cultivar used as female genotype. Microscopic analyzes demonstrated the germination of pollen grains and pollen tube growth at crosses between guava cv. ‘Pedro Sato’ (P. guajava) and Psidium cattleianum. High germination percentages of Psidium cattleianum seeds were obtained in MS medium without sucrose or containing 15 g/L of this carbohydrate.  相似文献   

11.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

12.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

13.
Outcrossing is an important problem in specialty maize (Zea mays L.) that can be prevented by using gametophyte factors, such as Ga1-s, which preserve maize plants from pollen contamination. Our objective was to check if the gametophyte factor Ga1-s can protect sweet corn homozygous for sh2 in an efficient and stable way. We combined Ga1-s and sh2 by crossing two popcorn and three sweet corn inbred lines, respectively, in a North Carolina Design II, followed by an ear-to-row breeding program with selection for sh2 phenotype and absence of outcrossing. The released inbred lines homozygous for Ga1-s and sh2 were used for obtaining five hybrids that were evaluated for outcrossing and agronomic performance. Our results show that the gametophyte factor Ga1-s effectively protects the sh2 plants and that this effect was stable across environments. However, the agronomic performance of these inbred lines must be improved. Popcorn donors and sweet corn receptors of Ga1-s were unevenly represented in the released Ga1-s / sh2 inbred lines, suggesting that the viability of sh2 is affected by the genotypes involved. Therefore, breeders should pay attention to the choice of donors of Ga1-s that favors the viability of sh2.  相似文献   

14.
Previous studies reported that some genotypes with introgressed Festuca chromosome segment(s) in Lolium genome showed enhanced winter hardiness compared to Lolium. The aim of this study was to search comprehensively for the Festuca pratensis chromosome regions affecting winter hardiness-related traits when introgressed into the Lolium perenne genome. Association between F. pratensis introgression and winter hardiness-related traits (fall and winter hardiness indexes, early-spring dry matter yield, and freezing tolerance) were screened in the diploid introgression populations (n = 203) that had some F. pratensis chromosome segments introgressed. Eighty-four intron markers corresponding to unique rice genes randomly distributed across the genome were used for genotyping. Winter hardiness of almost all plants in the introgression populations was lower than that of the F. pratensis and triploid hybrid parents, but the average was higher than that of L. perenne. A significant positive effect of F. pratensis introgression on early-spring dry matter yield was detected on chromosome 7. This quantitative trait locus (QTL) was confirmed by linkage analysis using a backcross population with F. pratensis introgression in the target region of chromosome 7. However, the contribution of the newly identified QTL was rather small (6.7–9.6%), suggesting that superior winter hardiness of F. pratensis compared to L. perenne is conferred by multiple small-effect QTLs. We also detected a previously unreported negative effect of Festuca introgression on winter hardiness. Newly obtained QTL information in this study would contribute to the design of Festuca/Lolium hybrid breeding.  相似文献   

15.
16.
Nineteen accessions of the tuber-bearing species Solanum berthaultii, S. chacoense, S. leptophyes, S. microdontum, S. sparsipilum, S. sucrense, S. venturii, S. vernei and S. verrucosum were tested for their resistance to late blight in two years of field experiments. Plants were artifically inoculated with zoospores of race 1.2.3.4.5.7.10.11 and the development of the disease was followed. Resistance ratings, calculated as the areas under the disease progress curves (ADPC), demonstrated a high resistance in all accessions except in S. sparsipilum, S. leptophyes and their interspecific hybrid. Segregations suggest that major genes for resistance are present in S. sucrense and S. venturii, and may also play a role in S. verrucosum. It is not yet certain wether the resistance of the other accessions is comparable to the partial and durable resistance of S. tuberosum cultivars like Pimpernel, as inheritance and mechanism have yet to be established. However, segregations suggesting the presence of single major genes with complete dominance were not found in these other accessions. Tuber initiation in the field occurred in only one accession, S. tuberosum ssp. andigena, and maturity of the clones was not related to their resistance. In the other accessions maturity types could not be assessed, as the clones require short day conditions for tuber initiation.  相似文献   

17.
The S core and its flanking sequences were identified from two independent draft genome sequences of radish (Raphanus sativus L.). After gap-filling with PCR, the S core regions and full-length S receptor kinase (SRK) genes from two radish genomes were obtained. Phylogenetic analysis of the SRK genes clearly showed that one S core region belonged to the class I S haplotypes, but the other was included in the class II S haplotypes. Three sequences showing homology with known transposable elements were identified in the core regions, and one intact copia-type long terminal repeat (LTR)-retrotransposon containing a 4125-bp open reading frame (ORF) was identified in the class I S haplotype. A total of 61 genes showing homology with the SRK genes were identified from two draft genome sequences. Among them, the RsKD1 showed the highest homology with the SRK genes. There was 90% nucleotide sequence identity between the RsKD1 and RsSRK1 genes in the kinase domains. The phylogenetic tree of SRK genes and 13 most closely related homologs showed that all homologs were more closely related to the class II SRK genes than to the class I SRKs. Physical mapping of radish SRK-homologous genes and their B. rapa orthologs showed that two radish homologs and their B. rapa orthologs were tightly linked to the SRK genes in radish and B. rapa genomes. Sequence information about multiple SRK-homologs identified in this study would be helpful for designing reliable primer pairs for faithful PCR amplification of the SRK alleles, leading to improvement of the S haplotyping system in radish breeding programs.  相似文献   

18.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

19.
Fusarium verticillioides and Aspergillus flavus cause Fusarium ear rot (FER) and Aspergillus ear rot (AER) of maize, respectively. Both pathogens are of concern to producers as they reduce grain yield and affect quality. F. verticillioides and A. flavus also contaminate maize grain with the mycotoxins fumonisins and aflatoxins, respectively, which has been associated with mycotoxicosis in humans and animals. The occurrence of common resistance mechanisms to FER and AER has been reported. Hence, ten Kenyan inbred lines resistant to AER and aflatoxin accumulation were evaluated for resistance to FER, F. verticillioides colonisation and fumonisin accumulation; and compared to nine South African lines resistant to FER and fumonisin accumulation. Field trials were conducted at three localities in South Africa and two localities in Kenya. FER severity was determined by visual assessment, while F. verticillioides colonisation and fumonisin content were quantified by real-time PCR and liquid chromatography tandem mass spectrometry, respectively. Significant genotype x environment interactions was determined at each location (P ≤ 0.05). Kenyan inbred CML495 was most resistant to FER and F. verticillioides colonisation, and accumulated the lowest concentration of fumonisins across localities. It was, however, not significantly more resistant than Kenyan lines CML264 and CKL05015, and the South African line RO549 W, which also exhibited low FER severity (≤5%), fungal target DNA (≤0.025 ng μL?1) and fumonisin levels (≤2.5 mg kg?1). Inbred lines resistant to AER and aflatoxin accumulation appear to be promising sources of resistance to F. verticillioides and fumonisin contamination.  相似文献   

20.
Wheat is one of the most widely grown cereal crops based on the amount of calories it provides in the human diet. Durum wheat (Triticum turgidum ssp. durum) is largely used for production of pasta and other products. In order to use genetic knowledge to improve the understanding of N-use efficiency, we carried out, for the first time in durum wheat, the isolation and the characterization of four members of the asparagine synthetase (AsnS) gene family. Phylogenetic inference clustered the Ttu-AsnS1 (1.1 and 1.2) and Ttu-AsnS2 (2.1 and 2.2) genes in AsnS gene class I, which is present in monocots and dicots. Class I genes underwent a subsequent duplication leading to the formation of two subgroups. Plants of Svevo cultivar were grown under N-stress conditions and expression of the four AsnS genes was investigated at three developmental stages (seedling, booting, and late milk development), crucial for N absorption, assimilation and remobilization. AsnS1 genes were down-regulated in N-stressed roots, stems and leaves during seedling growth and booting, but seemed to play a role in N remobilization in flag leaves during grain filling. AsnS2 genes were scarcely expressed in roots, stems, and leaves. In N-stressed spikes there was no differential expression in any of the genes. The genes were mapped in silico using a durum wheat SNP map, assigning Ttu-AsnS1 genes to chromosome 5 and Ttu-AsnS2 to chromosome 3. These findings provide a better understanding of the role of ASN genes in response to N stress in durum wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号