首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the optimal time for ovulation induction and artificial insemination (AI) based on the relationship between estrous behavior and ovulation in jennies. Thirty-two jennies were teased by one jackass for 1 hour per day during 46 days and estrous behaviors were recorded, while the follicular development and ovulation was examined by ultrasound. Furthermore, another 31 jennies were teased by one jackass as the teasing group (group T), which were injected with Deslorelin at 2 and 4 days after the onset of estrus, and AI was performed at 8 hours after each injection. Moreover, Ultrasound was performed on the follicle development of 23 jennies as the ultrasonography group (group U). Injection with Deslorelin when the follicle diameter ≥ 30 mm, and AI was performed at 8 hours later. The results showed that mouth clapping was the specific estrous behavior of jennies and indicated the beginning of estrus. The mean time for jennies to develop dominant follicles (≥30 mm) after the onset of estrus was 3.5 ± 1.3 days, and the mean time between the onset of estrus and ovulation was 5.1 ± 1.5 days. Estrous behaviors ended 0.5 ± 1.2 days after ovulation. After AI, there were no significant differences in ovulation (96.8% vs. 91.3%) and conception rates (40.0% vs. 38.1%) between group T and U. The optimal breeding time of jennies can be determined by jackass teasing and hastening ovulation by Deslorelin injection.  相似文献   

2.
The use of high-frequency (5 MHz) ultrasonography was studied in 11 jennies (7 non-pregnant and 4 pregnant) to characterize the reproductive organs and follicular activities at different stages of reproduction. The result showed close similarity with the mare. The visibility of endometrial folds increased towards ovulation. A positive correlation (p < 0.001; τ = 0.79) was found between the score of the folds and the size of the dominant follicle. The diameter of the uterus and the size of the dominant follicle were significantly correlated (p < 0.001; τ = 0.80). In pregnant jennies, an embryonic vesicle was detectable at 14 days. Follicular growth was characterized by more than one wave. The smallest ovarian follicle was 2 mm and the largest 40 mm. Depending on the reproductive stage, up to 13 follicles were detected per ovary. After monitoring 84 cycles, a mean (±SD) diameter of 34.4 ± 3.6 mm (27.5–40.2 mm) of the preovulatory follicle and 67.85% incidence of single ovulation were found. The mean (±SD) interovulatory interval was 25.7 ± 6 days. This study proved that high-frequency ultrasonography is highly effective in characterizing the reproductive organs and follicular activity of jennies and could be useful in the reproductive management of donkeys.  相似文献   

3.
Factors that affect ovarian follicular dynamics in cattle.   总被引:1,自引:0,他引:1  
Studies of ovarian follicular dynamics in cattle may lead to methods for improving fertility, for synchronizing estrus with more precision, and for enhancing superovulatory responses. Within an estrous cycle, two or three large (> 10 mm) follicles develop during consecutive waves of follicular growth. The last wave provides the ovulatory follicle, whereas preceding wave(s) provide follicles that undergo atresia. The life span of large follicles seems to depend on the pulsatile secretion of LH; decreased frequency of LH pulses results in atresia of large follicles. Aromatase activity in the walls of the largest follicles is greatest during the first 8 d of the estrous cycle and decreases by d 12. Steroidogenesis of the largest and second-largest ovarian follicles differs on d 5, 8, and 12 of the estrous cycle. Follicular dynamics are altered by negative energy balance and lactation. The number of large follicles and concentration of estradiol during the preovulatory period differs between postpartum lactating and nonlactating cows. Dietary fats stimulate follicular growth when they are fed to increase energy balance. Administration of bovine somatotropin decreases energy balance and has a differential effect on ovarian follicular responses; growth of the largest follicle does not change, but growth of the second-largest follicle is stimulated by somatotropin. Studies of follicular dynamics in lactating cows demonstrate changes in ovarian function associated with energy balance that may be related to inefficient reproductive performance of cows producing high yields of milk.  相似文献   

4.
Ovarian follicular growth, function and turnover in cattle: a review   总被引:3,自引:0,他引:3  
Studies in cattle assessing changes in number and size of antral follicles, concentrations of estradiol, androgens and progesterone in serum and follicular fluid, and numbers of gonadotropin receptors per follicle during repetitive estrous cycles and postpartum anestrus are reviewed. The rate of growth of small follicles (1 to 3 mm) into larger follicles increases as the estrous cycle progresses from d 1 to 18 (d 0 = estrus). Size of the largest antral follicle present on the ovary also increases with advancement of the estrous cycle. Most large follicles (greater than 10 mm) persist on the ovarian surface for 5 d or more between d 3 and 13 of the bovine estrous cycle. After d 13, most of these large follicles are replaced more frequently by new growing follicles (turnover) with an increased probability for recruitment of the ovulatory follicle after d 18. More research is needed to determine the time required for growth of bovine follicles from small to large antral size and evoke recruitment of the ovulatory follicle. Factors that regulate selection of the ovulatory follicle are unknown but may involve increased frequency of LH pulses in blood, altered blood flow and(or) changes in intrafollicular steroids and proteins. Quantitative evaluation of ovarian follicles indicated occurrence of consistent short-term changes in fluid estradiol and numbers of luteinizing hormone receptors in cells of large follicles only during the pre-ovulatory period. Presumably, low concentrations of follicular estradiol found during most of the estrous cycle are not due to a lack of aromatizable precursor or follicle-stimulating hormone receptors. Follicular fluid concentrations of progesterone increase only near the time of ovulation. Little is known about changes in follicular growth, turnover and function during postpartum anestrus in cattle. However, preliminary data suggest that the steroidogenic capacity of large follicles changes markedly during the postpartum period.  相似文献   

5.
Ovarian follicular dynamics of cattle were examined during the estrous cycle, early pregnancy and in response to PMSG. Number and size of follicles were monitored by ultrasonographic examinations. During the estrous cycle, distinct periods of follicular dominance (measured by the increase in difference in size between the largest and second largest follicle) occurred in both the luteal (Days 6-8) and proestrus (18-22) phases of the estrous cycle (two follicular waves). Associated with the well timed development of the first dominant follicle was a change in distribution of follicle numbers in small (less than 5 mm; increased on Days 2-4), medium (6-8 mm; increased on Days 3-5) and large (greater than or equal to 9 mm; increased on Days 6-9) follicular size classes. Follicular development was greater on the ovary bearing the CL for the period that the CL was present. The dominant follicle formed during the first follicular wave was capable of ovulating (6 of 8 heifers) following an injection of a synthetic analogue of prostaglandin F-2 alpha on Day 9 of the estrous cycle. During early pregnancy (Days 6-34), follicular development (size of largest follicle, number of follicles and total accumulated size of all follicles) on the ovary bearing the CL was suppressed between Days 24 and 34 of pregnancy. This was a local effect in that follicular development was sustained on the contralateral ovary. Therefore, the CL or conceptus may be regulating follicular development in a manner to help prevent luteolysis. Associated with the injection of PMSG was an initial increase in the number of small follicles followed by their recruitment into medium and large size classes leading to ovulation. Number of follicles greater than 5 mm on the Day of estrus was related (r = .97) to the number of subsequent embryos and oocytes collected. Ultrasonography is a valuable technique to monitor ovarian follicular dynamics in cattle, and can thereby be used to infer changes in physiological and endocrine states.  相似文献   

6.
The characteristics of the major follicular waves (primary and secondary) throughout estrous cycle were studied in 7 healthy Caspian mares (age, 4-15 years; weight, 198.6 ± 0.9 kg) during the breeding season. Ovarian follicular dynamics were monitored by using an ultrasound scanner equipped with a 5-MHz, B-mode, linear-array, rectal transducer throughout 2 complete estrous cycles. The diameters of antral follicles (5 mm) were measured, averaging the narrowest and widest dimensions. To detect follicular wave emergence, the diameter profile of the 3 largest follicles per ovary of each mare was determined without considering day-to-day identity of follicles but with maintenance of distinction between left and right ovaries. The primary waves originated on day 6.4 ± 0.81 (ovulation = day 0) when the mean diameter of ovarian follicles was 9.6 ± 1.05 mm. Divergence between the dominant preovulatory follicle and subordinate follicles occurred on day 13.4 ± 0.81, when the dominant follicle was 18.1 ± 2.67 mm in diameter. The intervals from emergence to divergence and from divergence to ovulation were 7 ± 0.68 and 8.7 ± 0.68 days, respectively. Secondary major follicular waves were not observed during this study. In conclusion, only 1 major follicular wave was detected in a Caspian mare, confirming the data previously described in other equine breeds. It is also indicated that the occurrence of 1 major follicular wave per cycle is a more common phenomena in equine species.  相似文献   

7.
Relatively few studies have been reported regarding the reproductive physiology of female Thai native cattle. Therefore, the objective of the present study was to evaluate the follicular dynamics and concentrations of follicle stimulating hormone (FSH), estradiol (E2) and progesterone (P4) during the estrous cycle in Thai native heifers (TNH) and to compare obtained results with those of European and Indian cattle breeds previously reported. For the detection of estrus, ovaries of all 20 heifers were examined twice daily (12 h intervals) by ultrasonography for three consecutive estrous cycles. From data of 60 estrous cycles (n = 60 estrous cycles from 20 heifers), it was found that 14 (70%) and 6 heifers (30%) had two (42 estrous cycles collected from 14 heifers) and three follicular waves (18 estrous cycles collected from 6 heifers), respectively. The days when estrus was detected, interovulatory intervals, life‐spans of corpus lutea (CL), and days for growing and regression of CLs were shorter in the two follicular waves than those in the three follicular waves (P < 0.05). In both two and thre follicular waves, larger maximum diameters and higher growth rates of the dominant follicle (DF) in an ovulatory wave were observed than those of the preceding waves without ovulation (P < 0.05). There was a progressive increase in follicular size and FSH and E2 production during follicular growth in each follicular wave. In addition, the FSH and E2 peak concentrations during the ovulatory wave were higher than those of the anovulation waves (P < 0.05). Moreover, although the ovarian follicular dynamic patterns in Thai native heifers were similar to those previously reported for European and Indian cattle breeds, the diameter of the largest preovulatory follicle (OF), subordinate follicles (SF) and CLs were smaller than those in European and Indian cattle breeds. In conclusion, when compared with European and some breeds of Indian cattle, the length of interovulatory intervals was shorter, and the sizes of dominant SF and CLs were smaller in Thai native heifers.  相似文献   

8.
The aim of the present study was to test the hypothesis of wave pattern of follicular growth and to monitor the ovarian follicular dynamic in Iraqi buffalo cows. Reproductive tracts were collected at random intervals slaughtered at Mosul abattoir. According to morphological appearance of the corpus luteum, the estrous cycle was divided into four stages. The number of subordinate follicle (<5 mm in diameter) was higher during stage 1 (metestrous) and stage (proestrous and estrous) than during other stages of the estrous cycles, 13.5 ± 6.08 and 4 9.41 ± 3.94, respectively. There were fewer follicles (5–8 mm in diameter) during early diestrous and proestrous, 1.66 ± 1.42 and estrous, 0.69 ± 0.47 than during metestrous, 4.53 ± 3.23 and late diestrous, 3.66 ± 2.23. Follicles > 8–12 mm in diameter were more numerous during early diestrous, 1.62 ± 1.29 and late diestrous, 1.03 ± 0.72. A total 38 (64.6%; 82/127) animals examined showed follicles larger than 8 mm during early and late diestrous (stage 2 and stage 3). This indicated that these buffaloes developed two follicular waves in their cycle. Buffaloes did not show follicles larger than 8 mm during early and late diestrous were 45 animals (35.4%; 45/127), but all of these presented one large follicle during the following stage. These buffaloes develop only one follicular wave in their cycle. It could be concluded that, 64.6% of Iraqi buffalo cows develop two patterns of follicular waves, and 35.4% showed one wave of follicular dynamics.  相似文献   

9.
Follicular estradiol triggers luteolysis in cattle. Therefore, the control of follicle growth and steroidogenesis is expected to modulate luteal function and might be used as an anti‐luteolytic strategy to improve embryo survival. Objectives were to evaluate follicular dynamics, plasma concentrations of estradiol and luteal lifespan in Bos indicus and crossbred cows subjected to sequential follicular aspirations. From D13 to D25 of a synchronized cycle (ovulation = D1), Nelore or crossbred, non‐pregnant and non‐lactating cows were submitted to daily ultrasound‐guided aspiration of follicles >6 mm (n = 10) or to sham aspirations (n = 8). Diameter of the largest follicle on the day of luteolysis (7.4 ± 1.0 vs 9.7 ± 1.0 mm; mean ± SEM), number of days in which follicles >6 mm were present (2.3 ± 0.4 vs 4.6 ± 0.5 days) and daily mean diameter of the largest follicle between D15 and D19 (6.4 ± 0.2 vs 8.5 ± 0.3 mm) were smaller (p < 0.01) in the aspirated group compared with the control group, respectively. Aspiration tended to reduce (p < 0.10) plasma estradiol concentrations between D18 and D20 (2.95 ± 0.54 vs 4.30 ± 0.55 pg/ml). The luteal lifespan was similar (p > 0.10) between the groups (19.6 ± 0.4 days), whereas the oestrous cycle was longer (p < 0.01) in the aspirated group (31.4 ± 1.2 vs 21.2 ± 1.3 days). Hyperechogenic structures were present at the sites of aspiration and were associated with increase in concentration of progesterone between luteolysis and oestrus. It is concluded that follicular aspiration extended the oestrous cycle and decreased the average follicular diameter on the peri‐luteolysis period but failed to delay luteolysis.  相似文献   

10.
The Girolando breed is used in pasture-based dairy production systems in Brazil to associate the high production of Bos taurus to the rusticity and thermal adaptation of Bos indicus. This study was designed to evaluate the physiological response to a gonadotropin-releasing hormone (GnRH)–prostaglandin F (PGF)–GnRH protocol to synchronize the ovulation in 40 Girolando heifers of a pasture-based dairy production system and its relationships with the temperature and humidity index (THI) during the dry (DS) and rainy season (RS) in the tropical savannah—Brazil's cerrado biome. Responses were characterized by follicular and corpus luteum number and diameter, ovulation (D9), and pregnancy rates after first AI. Total follicle number (8.1?±?0.3?×?8.8?±?0.3), D9 ovulatory follicle diameter (11.9?±?0.4?×?10.1?±?0.4 mm), corpus luteum diameter (8.6?±?1.3?×?3.9?±?1.5 mm), corpus luteum score (3.7?±?0.8?×?1.8?±?1.0), corpus luteum diameter after AI (9.6?±?1.6?×?3.9?±?1.5 mm), and corpus luteum score after AI (3.2?±?0.4?×?0.9?±?0.6) in DS and RS differed (P?<?0.01). D9 ovulation rate was 40 % (DS) and 20 % (RS), without differences (P?>?0.05). Pregnancy rate was 45 % (DS) and 11 % (RS), with differences (P?<?0.01). THI differed between DS and RS (P?<?0.01). THI may interfere in the follicular and luteal dynamics and in the response of Girolando heifers to the GnRH–PGF protocol in the tropical savannah, thus reducing the chances of pregnancy at the first artificial insemination.  相似文献   

11.
The study was conducted to compare estrous rate, ovulatory response, plasma progesterone concentrations, and conception rate following cervical artificial insemination in goats given a new or once-used controlled internal drug release (CIDR) device with human chorionic gonadotropin (hCG). Fifty-six Thai-native goats with the average age and body weight of 11 months and 17.3 kg received a 14-day treatment with a new CIDR device (Eazi-BreedTMCIDR®, Pfizer, NY, USA) or a once-used CIDR device. All goats received a 300-IU injection of hCG (Chorulon®, Intervet International B.V., New Zealand) at the day of CIDR removal to induce ovulation. All goats displaying signs of Estrous behavior were artificially inseminated at 12 h after the onset of estrus with frozen semen. No differences in percentage of estrus and ovulation rates were observed; however, goats that received once-used CIDR devices exhibited shorter (P?P?>?0.05) between treatments during CIDR device insertion and at the time of CIDR removal except on day 4. No significant differences were found in overall conception rates between the treatments. This study indicates that the once-used CIDR device with hCG could be applied to synchronize the estrus and ovulation in small-size Thai-native goats without negative effects on Estrous behavior, ovulatory response, and plasma P4 concentration.  相似文献   

12.
Estrous cycles of heifers (n = 137) were synchronized with prostaglandin (PGF) and follicular development stimulated with follicle stimulating hormone. Twenty-eight animals were administered Norgestomet implants 12 hr prior to the initial PGF2α injection to suppress the LH surge that initiates ovulation. Animals were ovariectomized every 12 hr after the initial PGF2α (7–9/time, 12–108 hr and at 192 and 240 hr post PGF2α) and divided into three treatment groups to consist of: 1) animals exhibiting a normal luteinizing hormone (LH) surge (n = 86), 2) animals in which no LH surge was detected (n = 23), and 3) suppression of the LH surge via Norgestomet implants (72–108 hr, n = 28). Follicular diameter was measured and follicular fluid was collected for analysis of prolactin, estradiol, progesterone and glycosaminoglycan concentrations. Progesterone concentrations were increased in animals exhibiting an LH surge as compared to animals in which no LH surge was detected; primarily in large follicles (> 8 mm diameter) after the LH surge. Animals not exhibiting an LH surge also had increased follicular progesterone concentrations compared to Norgestomet-implanted animals (242.3 ± 36.3 vs 86.7 ± 6.4 ng/ml, respectively, P < .01), indicating some LH stimulation. Follicular estradiol in animals exhibiting an LH surge increased up to the time of LH surge detection and then declined whereas animals with no LH surge detected had follicular estradiol concentrations that declined after the PGF injection. No differences were noted between those that did not exhibit an LH surge or in which the LH surge was suppressed with Norgestomet in relation to follicular estradiol concentrations. Follicular estradiol concentrations increased with follicular size in all treatment groups (P < .01). Follicular concentrations of prolactin were increased in small follicles (P < .05; ≤ 4 mm diameter) and follicular prolactin increased from 12 to 36 hr post PGF2α injection, then declined after the LH surge. Follicular glycosaminoglycan concentrations decreased with increases in follicular size (P < .01) and were higher in animals that did not exhibit an LH surge (P < .01). No differences in follicular glycosaminoglycans were noted between Norgestomet-implanted animals and those not exhibiting an LH surge. In the animals representing days 4 and 6 of the subsequent estrous cycle (192 and 240 hr post PGF2α), numbers of small-sized follicles were increased. Follicular progesterone and estradiol concentrations were related to atretic large follicles unovulated from the prior estrus and a wave of growth in small and medium follicles. Follicular prolactin and glycosaminoglycans increased with time of the new estrous cycle and were increased in smaller follicles (P < .01). Suppression of LH with progestin implants (Norgestomet) may relate to early effects of progesterone, which may not be totally eliminated at target tissues and subsequently alters the LH surge, steroidogenesis of the follicle, and ovulation. Oocytes were predominantly found in the follicular fluid from animals in which an LH surge was detected and in the buffer wash of follicles in which no LH surge was detected. Oocyte viability was higher in animals exhibiting an LH surge (75% viable) whereas the oocytes of Norgestomet-implanted animals were 75% degenerate.  相似文献   

13.
The effects of progesterone (P4) on follicular growth and fertility in ewes were examined. In Experiment 1, 22 ewes received either one or three packets of P4 (5 g/packed) or an empty packet subcutaneously (sc) from Days 5 to 15 of the estrous cycle (estrus = Day 0). On Day 6, P4-treated ewes received 12.5 mg of prostaglandin F2α. Follicles ⩾3 mm in diameter were observed via transrectal ultrasonography daily from Day 4 through estrus, corpora lutea (CL) were observed 5 to 7 d after estrus. Ewes with low (LOW; ⩽1 ng/ml; n = 5), intermediate (MED; > 1 and <2 ng/ml; n = 10), or normal (NOR; ⩾2 ng/ml; n = 7) P4 in jugular plasma on Days 7 through 15 differed in follicular development. The largest follicle at estrus was larger in ewes with LOW vs. MED and NOR P4 (7.8 ± 0.3 vs. 6.9 ± 0.2 mm; P < 0.05). Treatments differed in proportions of multiple-ovulating ewes, in which the oldest ovulatory follicle was first observed before Day 10 (LOW: 3 of 3, MED: 6 of 10, NOR: 0 of 5, respectively; P < 0.05). Estradiol was higher early in the treatment period in LOW ewes than in MED and NOR ewes (day × treatment; P < 0.05). In Experiment 2, ewes received 5 mg of P4 in corn oil (low progesterone [LP]; n = 51) or 2 ml of corn oil (CON; n = 49) sc every 12 hr on Days 6 through 14 of the estrous cycle before mating. LP ewes received 15 mg of prostaglandin F2α on Day 6. Mean serum P4 on Days 7 through 15 was 0.6 ± 0.1 ng/ml in LP and 1.9 ± 0.1 ng/ml in CON ewes. Eleven LP and 12 CON ewes were scanned daily from Day 4 through mating, and in all ewes (n = 93), CL were counted 10 d after mating and embryos were counted at 25, 40, and 60 d of gestation. In multiple-ovulating ewes, day of cycle of appearance was earlier for the oldest (Day 6.1 ± 0.8 vs. 10.4 ± 0.8) but not second oldest (Day 11.7 ± 1.0 vs. 12.2 ± 0.9) ovulatory follicles in LP compared with CON ewes. The conception rate was lower in LP (72%) than in CON ewes (98%; P < 0.01). However, numbers of CL 10 d after mating, and in pregnant ewes, numbers of embryos 25 d after mating and lambs born, did not differ with treatment. In summary, low P4 increased the size of the largest follicles and the age of the oldest ovulatory follicles. Embryos resulting from the ovulation of older and younger follicles in the same ewe did not differ in their ability to survive.  相似文献   

14.
A growing body of evidence indicates that intrafollicular progesterone receptor signaling pathways are obligatory for follicle rupture. However, the intrafollicular localization and regulation of progesterone receptor expression during the periovulatory period in cattle are not known. In this study, we determined the effect of the preovulatory gonadotropin surge on localization and expression of progesterone receptor mRNA in bovine periovulatory follicular and luteal tissue. Ovaries containing preovulatory follicles or new corpora lutea (CL) were collected at approximately 0, 6, 12, 18, 24 (preovulatory follicles) and 48 h (CL) after a GnRH-induced LH surge (n=5-8 per timepoint). Expression of progesterone receptor mRNA was detected in periovulatory follicular and luteal tissue at all timepoints examined. Relative levels of progesterone receptor mRNA were dramatically upregulated within 6h after the LH surge compared to all other time points (P<0.0001). In situ hybridization analysis revealed that the significant increase in progesterone receptor mRNA expression was localized to the granulosal layer of preovulatory follicles. Our results indicate that progesterone receptor mRNA expression is upregulated specifically in the granulosal layer of bovine preovulatory follicles following the LH surge. Progesterone receptor signaling pathways may help mediate the effects of the preovulatory LH surge on follicle rupture in cattle.  相似文献   

15.
Changes in follicular and luteal structures were assessed and concentrations of estradiol and progesterone were measured in 13 Hereford X Angus suckled beef cows during resumption of estrous cycles. Transrectal ultrasonography was used to monitor follicular size, ovulation, and formation and regression of the corpus luteum (CL). The interval from parturition to first postpartum ovulation (FO) was 82 +/- 4.7 d. Serum progesterone remained low before FO. One cow exhibited standing estrus, two cows showed other signs of estrus, and 10 displayed no signs of behavioral estrus preceding FO. All cows exhibited standing estrus before the second postpartum ovulation (SO). All cows had a short luteal phase after FO, with an average interval of 8.5 +/- .2 d between FO and SO. Concentrations of estradiol in serum during the 8 d preceding ovulation were similar before FO and SO. Maximal diameter of the preovulatory follicle was similar before FO and SO. However, the ovulatory follicle was larger in diameter at 2 d (P = .02) and 3 to 8 d (P less than .005) before FO than before SO. The time from detection until ovulation was less (P = .005) for the ovulatory follicle preceding SO than for the follicle associated with FO (8.5 vs 10.2 d, respectively, SE = .4). The second-largest follicle was larger (P less than .005) in diameter during the 8 d preceding the FO than before the SO. The difference in size between the ovulatory follicle and the second-largest follicle on the day before ovulation was greater (P less than .005) preceding SO than preceding FO (8.7 vs 6.6 mm, respectively, SE = .4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study was undertaken to determine changes in follicular populations on ovaries of dairy cows during three stages of the estrous cycle and their steroidogenic capacity in vitro. Numbers of small (2.0 to 5.0 mm), intermediate (5.1 to 10 mm) and large (greater than 10 mm) antral follicles on ovaries of multiparous cows and heifers (n = 31) in the early luteal (d 4), mid-luteal (d 12) and follicular phase (d 19) of the estrous cycle were determined (d 0 = estrus), and steroidogenic capacity of intermediate and large follicles was measured in vitro. Total number of follicles and number of small follicles were greatest (P less than .05) on d 19 compared with d 12, with numbers on d 4 not different from either d 12 or 19. Intermediate follicles were fewer (P less than .05) on d 19 compared with d 4 or 12. Numbers of large follicles did not change. The proportion of estrogen active (EA) follicles was greater (P less than .05) on d 19 compared with d 4 or 12. Accumulation of estradiol-17 beta (E) into culture medium by intermediate follicles decreased (P less than .05) with increasing days of the estrous cycle, while accumulation of progesterone (P) was greater on d 19. In large follicles, accumulation of E into culture medium was greatest (P less than .05) on d 19 and the lowest on d 12 (P less than .05). In summary, the proportion of EA follicles increases during the preovulatory period, and E production increases in large EA follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
本试验旨在研究代谢产物、代谢激素和生殖激素在湖羊黄体期不同发育卵泡内的变化。选用体质量40kg左右的湖羊11头,同期发情结束后第12天屠宰,按不同大小卵泡分离卵泡液。试验结果表明,与≤2.5mm卵泡相比,>2.5mm卵泡内的葡萄糖浓度显著提高(P<0.05),胰高血糖素浓度显著降低(P<0.05),乳酸脱氢酶(LDH)活性和睾酮浓度极显著降低(P<0.01),雌二醇浓度极显著提高(P<0.01),而血氨、游离脂肪酸、尿素、胰岛素和孕酮浓度差异不显著。雌二醇浓度与LDH活性呈极显著负相关(P<0.01),与葡萄糖浓度呈显著正相关(P<0.05),与胰高血糖素浓度呈显著负相关(P<0.05),与睾酮浓度呈极显著负相关(P<0.01),与孕酮浓度接近正相关(P=0.051)。试验结果表明代谢产物和激素共同参与调节卵泡发育。  相似文献   

18.
This work was designed to evaluate the ovarian follicular development, oocytes morphology, methods of oocytes reterival, and the effect of different in vitro maturation (IVM) media on cumulus cell expansion and nuclear maturation of Jennies oocytes. Experiment 1, the number of small (<6 mm), medium (6 to 9 mm) and large size (>10 mm) ovarian follicles was recorded. Cumulus-oocyte-complexes (COCs) were reterived and classified into 4 Grades based on their cumulus-cells investment and the homogenous of the ooplasm. In Experiment 2, COCs were recovered by using 18-G, 20-G needle or slicing and scraping of ovarian follicles to determine the number and morphology of the recovered COCs. In Experiment 3, Grade A and B COCs were IVM in DMEM-HG, DMEM-LG, DMEM-F12, TCM199, TCM199-F12 or CR1aa media supplemented with 10 % FCS?+?10 μg FSH/mL?+?10 IU hCG/mL?+?50 μg/mL gentamicin. Maturation was performed for 36 h at 38.5 °C under 5 % CO2 in humidified air. After IVM, cumulus cell expansion and oocytes nuclear canfiguration were determined. An average of 6.40?±?0.26 follicles was recorded per Jenny ovary, representing 3.37?±?0.46, 1.89?±?0.14 and 1.14?±?0.16, for the small, medium and large size follicles, respectively. Oocyte recovery was higher (P?P?P?P?P?P?P?P?Conclusion: Slicing and scraping or aspiration of follicles using 18-G needle increased the number and percentage of Grade A Jennies oocytes. TCM199-F12, CR1aa and TCM199 medi are more suitable for IVM of Jenny oocytes by promoting cumulus cells expansion and nuclear maturation to M II stage.  相似文献   

19.

The aim was to determine the effect of season and breed group on follicular population, and presence and size of CL of heifers under tropical conditions. The seasons were hot-dry (March–June), hot-humid (July–October), and fresh-humid (November–February). Thirty Zebu (Brahman) and 38 F1 (Simmental?×?Brahman) heifers were used. Five evaluations were made in each season, at intervals of 7 days, to assess ovarian activity by ultrasound. Follicles were classified as small (≤4 mm), middle (4.1–8 mm), and large (≥8.1 mm) sizes, and also the size of CL, when present, was measured. Data were analyzed using analysis of variance and logistic regression procedures. Mean number of small follicles was 11.6?±?2.3 with no effect of season, breed group, or their interaction (P?>?0.05). Mean number of middle follicles was influenced by season and breed group; the highest average was found in the fresh-humid season (4.0?±?0.2) and in F1 heifers (3.6?±?0.2; P?<?0.05). The highest mean number of large follicles was in the hot-humid season (1.4?±?0.1; P?<?0.05). The highest maximum follicle diameter (MFD) mean was registered in the hot-humid season (1.3 mm; P?<?0.05) and the lowest proportion of heifers with CL occurred in fresh-humid season (33.3%; P?<?0.05). No effect of season, breed group, and interaction on the maximum diameter of the CL was found. In conclusion, season was a very important source of variation. Heifers in the hot-humid season had the largest follicles and MFD, and better cyclicity.

  相似文献   

20.
Seventy-one 10th-generation gilts from White Line-1 (WL-1 = randomly selected control line) and White Line-2 (WL-2 = selected for an index of ovulation rate and prenatal survival rate) were used to compare the pattern of follicular development and atresia during the follicular phase of the estrous cycle. Gilts were treated with PGF(2alpha)on d 13 of the estrous cycle (d 0 of induced follicular development) to induce luteolysis and assigned randomly within line and sire for ovary recovery on d 0, 2, 3, 4, 5, and the day after estrus. Ovaries were evaluated for numbers of corpora albicantia and small (2 to 2.9 mm), medium (M1 = 3 to 4.9 mm; M2 = 5 to 6.9 mm), and large (>or=7 mm) follicles. The concentration of estradiol-17beta in follicular fluid was used to classify individual M2 and large follicles as estrogen-active (>or=100 ng of estradiol-17beta/mL) or inactive (<100 ng of estradiol-17beta/mL). The WL-2 gilts had a greater ovulation rate than WL-1 gilts at their pre-treatment estrus (20.4 vs. 13.8 corpora albicantia; P < 0.001). The small and M1 follicle populations decreased rapidly in both lines over time (P < 0.001). The M2 follicle population increased in both lines between d 0 to 4 and then decreased. Mean estradiol concentration of M2 follicles increased in both genetic lines over time (P < 0.02). All large follicles were estrogen-active in both lines; the number of large follicles increased with day (P < 0.001) and was similar in both lines. The number of estrogen-active M2 follicles was similar in both lines, increasing to d 3 and 4 and then decreasing (P < 0.01) thereafter. However, the total number of estrogen-active follicles (sum of estrogen-active M2 and large follicles) was greater in WL-2 than in WL-1 gilts (P < 0.04), increasing to the ovulatory potential by d 3 in WL-1 gilts, but continuing to increase through d 4 in WL-2 gilts. Selection of an additional six ovulatory follicles from the estrogen-active M2 follicle pool after d 5 was required in both lines to achieve the projected ovulation rate, and after estrus, the number of large follicles remained insufficient to attain the ovulatory potential of each line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号