首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is mainly SO2 that bring about acid rain in China. Changchun City, which is located in Northeast China, is a typical city that is polluted by SO2 from coal combustion in winter. In winter, the daily mean concentration of atmospheric SO2 is about 0.10mg/m3 and about 5 times as high as in summer, and the daily highest concentration usually appears in daybreak and nightfall. The monitored lowest pH value of rainwater was 4.8 in spring and the range of pH value of rain/snow was 5.2–6.0 in winter, 4.8–5.8 in spring, 5.4–6.4 in summer, 5.6–6.4 in autumn, and the annual mean pH value of rainfalls was 5.8 (1999–2000). Because the alkaline aerosol from soil, meteorological conditions etc., is unfavorable to acid rain formation, even though high SO2 emission intensity existed in winter, the acid rain did not appear obviously. The aerosol character, climate conditions in Northeast China are important factors for the acid rain formation, although SO2 emission is the original cause.  相似文献   

2.
Rain water at two forested sites in Guangzhou (south China) show high concentrations of SO4 2?, NO3 ? and Ca2+ and display a remarkable seasonal variation, with acid rain being more important during the spring and summer than during the autumn and winter. The amount of acid rain represents about 95% of total precipitation. The sources of pollutants from which acid rain developed includes both locally derived and long-middle distance transferred atmosphere pollutants. The seasonal variation in precipitation chemistry was largely related to the increasing neutralizing capacity of base cations in rainwater in winter. Soil acidification is highlighted by high H+ and Al3+ concentrations in soil solutions. The variation in elemental concentration in soil solution was related to nitrification (H+, NH4 + and NO3 ?) and cation exchange reaction (H+, Al3+) in soil. The negative effect of soil acidification is partly dampened by substantial deposition of base cations (Ca2+, Mg2+ and K+) in this area.  相似文献   

3.
Gas and aerosol measurements were performed at 3 ground based measuring sites at Mt. Rigi in central Switzerland during 2 winter seasons. Both NH3 and NH4 + show a strong vertical concentration gradient between the top station (1620 masl) and the bottom station (430 masl). High concentrations of NH3 with values up to 29 ppbv, were found at the bottom station. HNO3 concentrations were usually below 1 ppbv, with lower values at the bottom station than at the top station that presumably reflect particulate NH4NO3 formation due to high NH3 concentrations at the lower site. No vertical concentration gradient was found for SO2. Simple models have been used to estimate below-cloud scavenging of gaseous NH3 and particulate NH4 + by rain between two sites with a vertical separation of 600 m. The calculations used measurements from three case studies. Below-cloud scavenging of NH3 by rain was found to be more important than below-cloud NH4 + scavenging. From 58 to 88 % of the increase of [NH4 +] in precipitation between the two sampling sites was calculated to result from gas scavenging. Both observations and scavenging calculations were in relatively good agreement for three events. Observations from the present study and tests using different aerosol and raindrop diameters in the calculations point to the importance of using real data in below-cloud scavenging studies considering the relative importance of aerosol and gas scavenging.  相似文献   

4.
Growing cloud droplets absorb such atmospheric gaseous pollutant as SO2(g), condensing atmospheric water vapor into themselves. Then, the cloud droplets are acidified by absorption of SO2(g) during condensational growth on cloud condensation nuclei (CCN). Characteristics of this process, which is a part of rainout, have not been made clear yet. In order to estimate the contribution of rainout to acid rain formation, the acidification of growing cloud droplets is investigated numerically, using a mathematical model. The numerical simulations show that: (1) the time to attain the equilibrium state for mass transfer (acidity and growth) and heat transfer (temperature) is much longer than the time for disappearance of CCN; (2) time variation of acidity and temperature of cloud droplets are greatly dependent on the existence of undissolved CCN; and (3) there seems to be a close correlation between the time variation of the acidity and that of the temperature.  相似文献   

5.

In order to investigate the acid rain formation under the coexistence of SO2(g), H2O2(g), and HNO3(g) in the air, a mathematical model has been built and some numerical simulations have been carried out with use of the model. The simulation reveals that SO2(g) absorbed into a raindrop is released and then re-absorbed as the fall distance increases. The desorption and re-absorption processes of SO2(g) are caused by: (1) the fact that the equilibrium concentration of H2O2(aq) and HNO3(aq) in raindrops are much higher than that of SO2(aq), and (2) the fact that the oxidation reaction rate of HSO3 ? with H2O2(aq) increases with H+ concentration in raindrops. The degree of acidification of the rainwater has been estimated by introducing a raindrop size distribution. The acidification is mainly caused by the adsorption of SO2(g) in the usual case where the atmospheric concentration of SO2(g) is much higher than that of HNO3(g). With the increase in the atmospheric concentration of HNO3(g), the concentration of H+ generated from SO2(g) decreases and the contribution of HNO3(g) to the generation of H+ becomes dominant.

  相似文献   

6.
In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H2SO4 and nitrate, and rain water containing ammonium sulphate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulphate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulphate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH=3.8. Under acidified conditions, ammonium sulphate deposition lead to a luxuriant growth ofJuncus bulbosus andAgrostis canina. In the mini-ecosystems, H2SO4 deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr. The acidification of water appeared to be coupled with changes in alkalinity, sulphate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH3-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulphate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters.  相似文献   

7.
This paper presents an analysis of cloud water measurements made during the summers of 1986 and 1987 at Whitetop Mountain, Virginia (36.639° N, 81.605° W). Analysis of cloud water chemistry, cloud type, and air mass origin are made for each cloud event occurring during one 3 to 4 week measurement ‘intensive’ per year. Regional source/receptor relationships are also investigated. Cloud water concentrations of major ions (i.e., H+, SO4 2?, NO3 ?, and NH4 +) are consistently higher during orographically formed ‘cap’ cloud events. Differences in cloud liquid water content between cap and frontal cloud events explains most, but not all, of the cloud water ion concentration differences. The remaining difference can be explained by greater rainfall associated with frontal cloud events. Most of the cloud water sulfate measured at Whitetop Mountain is apparently due to nucleation of aerosol sulfate within cloud droplets and not to local in-cloud aqueous phase SO, oxidation. No strong source/ receptor relationships were evident from this analysis. Most 72 hr air trajectories arriving at Whitetop Mountain during the cloud events described in this paper originated in the southeastern United States. Few came from the Ohio River Valley or the northeastern United States.  相似文献   

8.
Using thermodynamic data, the effect of SO2 and H+ on the deterioration of marble has been estimated. Theoretically, the partial pressure threshold of SO2 required for the marble deterioration in the SO2-marble system is in the order of 10?54 atm. The pH of rainwater for the deterioration of marble in the H+-marble system was calculated at about 7.8 for the dissociation of reaction products. The thermodynamic calculations showed that SO2-marble and H+-marble reactions are possible in the atmosphere, but that marble deteriorates faster by reacting with SO2 than with H+. Marble can deteriorate under normal atmospheric conditions and by natural rain. Acid deposition enhances the degree of the marble deterioration in the atmosphere.  相似文献   

9.
Fog/cloud and rain water were collected at the mountainside of Hachimantai range in northern Japan and rain water was also collected at Akita City in order to investigate the air pollutant scavenging mechanism. The concentrations of various ions in these samples were analyzed, and the fog drop size and the wind direction were measured at each fog event. The fog at Hachimantai range had a very high total ion concentration, and was considerably acidified by non sea salt (nss-) SO4 2? and NO3 ?, compared with the rain at Akita and all sites in Hachimantai range. Using the oblique rotational factor analysis, three factors were extracted as the air pollutants; A: (NH4)2SO4+H2SO4, B: sea salts+HNO3+H2SO4, C: NH4NO3+OH?. These salts are well-known as the cloud condensation nuclei (CCN). Combining the factor analysis with the 72h back trajectory at 850hPa level, the contribution of Factor A was closely connected to the long-range transportation of anthropogenic or natural aerosol in air masses of continental origin.  相似文献   

10.
Project Rain (Reversing Acidification In Norway) is a 5-yr international research project aimed at investigating the effect on water and soil chemistry of changing acid deposition to whole catchments. The project comprises 2 parallel large-scale experimental manipulations -- artificial acidification at Sogndal and exclusion of acid rain at Risdalsheia. Treatment at Sogndal commenced April 1984 with the acidification of the snowpack by addition of H2SO4 (SOG2) and a 1:1 mixture of H2SO4 and HNO3 (SOG4). Preliminary results indicate rapid and significant response in runoff chemistry to the acid treatment; pH decreased (to as low as 4.1 during snowmelt in 1984); SO4, NO3, and labile Al increased. Response during snowmelt 1985 was modest relative to 1984. At Risdalsheia treatment began in June 1984 with the mounting of the transparent panels on the roofs at KIM catchment (treatment by deacidified rain) and EGIL catchment (control with ambient acid rain). Preliminary data for the first year indicate that most runoff samples from KIM contain much lower NO3 concentrations, about 20 to 30% lower SO4 levels and pH 0.1 to 0.3 units higher than runoff from EGIL catchment. The treatments continue in 1985–87. Project RAIN provides experimental evidence bearing on target loading, reversibility of acidification, and the processes linking acid deposition, soil acidification and freshwater acidification.  相似文献   

11.
Rainwater has been sampled weekly from five sites (nos. 1–5) in northeastern Vietnam in the period of May 1997 to Apr. 2000 (except Hoabinh site, from Aug. 1999 to Apr. 2000). Since Aug. 1999, weekly dry deposition samples including acidic gas and aerosol have been additionally collected at Hanoi (no. 4) and Hoabinh (no. 5) using filter pack system. In general, the pH in rainwater was frequently higher than 5.0. However, the trend of lower pH was observed during the winter and the beginning of autumn (from Nov. to Apr.). Interestingly, the highest frequency of the acidifying rainwater (32 %) and the lowest pH value (min. pH = 4.0) were observed in Hoabinh site. Acidic pH of rain water was also observed in Viettri (no. 3) and Hanoi (no. 4), indicating the local effects of human and industrial activities. Ca2+ and SO4 2? were generally found as predominant in both rainwater and aerosol. SO2 and NH3 in Hanoi and Hoabinh were monitored out of corresponding environmental features.  相似文献   

12.
The atmospheric chemistry, deposition and transport of mercury (Hg) in the Upper Great Lakes region is being investigated at a near-remote sampling location in northern Wisconsin. Intensive sampling over two years and various seasons has been completed. A multi-phase collection strategy (gas-, particle- and precipitation-phases) was employed to gain insight into the processes controlling concentrations and chemical/physical speciation of atmospheric Hg. Additional chemical and physical atmospheric determinations (e.g. ozone, particulate constituents, meteorology) were also made during these periods to aid in the interpretation of the Hg determinations. For example, correlations of Hg with ozone, sulfur dioxide and synopticscale meteorological features suggest a regionally discernible signal in Hg. Comparison to isosigma backward air parcel trajectories confirms this regionality and implicates the areas south, southeast and northwest of the site to be sources for Hg. Particle-phase Hg (Hgp) was found to be approximately 40% in an oxidized form, or operationally defined as “reactive”. However, this was quite variable from year-to-year. Hgp and other particle constituents (esp. sulfate) show significant correlation and similarity in behavior (concentration ratios in precipitation and in particles). These observations are part of the growing evidence to support the hypothesis that precipitation-phase Hg arises in large part from the scavenging of atmospheric particulates bearing Hg. Observed concentrations of rain and particle-Hg fit broadly the theoretical expectations for nucleation and below-cloud scavenging. Significant increases in the Hg/aerosol mass ratio appear to take place during transport. Enrichment of aerosols is taken as evidence of gas/particle conversion which could represent the step linking gas-phase Hg with rain. The refined budget indicates ca. 24% of total deposition is from summer particle dry deposition, and that this deposition also contributes ca. 24% of all reactive Hg deposition. Additionally, almost all (86%) deposition (wet and dry) occurs during the summer months.  相似文献   

13.
Rain event samples have been collected in Haifa, Israel, for nine hydrological years 1981 to 1990. Precipitation amount, pH, SO4 =, NO3 ?, Cl?, NH4 +, Na+, K+, Ca++, Mg++ and alkalinity of rainwater samples were recorded. The sampling and analysis program was based on WMO recommendations for background networks. The sampling was performed manually, and the analysis was based on wet chemistry for ions and atomic absorptions for metals. Data of 187 rain samples showed that the average pH was 5.3±1.1∶ 26% of the rain events were below pH of 5.6 and 23% above pH of 7.0. Some simple chemical mass-balance considerations indicate that natural sources, sea salt and soil carbonates are the main contributors to rain chemistry. However, the presence of low pH events observed over the years suggests that the impact of anthropogenic emissions may overwhelm the buffering capacity of the alkaline aerosol.  相似文献   

14.
Abstract Soil samples have been taken periodically from unlimed plots of the 130-year-old Park Grass Experiment and from the 100-year-old Geescroft Wilderness at Rothamsted. Changes in the pH of the samples show how acidification has progressed. The soils are now at, or are approaching, equilibrium pH values which depend on the acidifying inputs and on the buffering capacities of the soils. We have calculated the contributions to soil acidification of natural sources of acidity in the soil, atmospheric deposition, crop growth and nutrient removal, and, where applicable, additions of fertilizers. The relative importance of each source of acidification has changed as the soils have become more acid. Acid rain (wet deposited acidity) is a negligible source, but total atmospheric deposition may comprise up to 30% of acidifying inputs at near neutral soil pH values and more as soil pH decreases. Excepting fertilizers, the greatest causes of soil acidification at or near neutral pH values are the natural inputs of H+ from the dissolution of CO2 and subsequent dissociation of carbonic acid, and the mineralization of organic matter. Under grassland, single superphosphate and small amounts of sodium and magnesium sulphates have had no effect on soil pH, whilst potassium sulphate increased soil acidity slightly. All of these effects are greatly outweighed under grassland, however, by those of nitrogen fertilizers. Against a background of acidification from atmospheric, crop and natural inputs, nitrogen applied as ammonium sulphate decreased soil pH up to a maximum of 1.2 units at a rate in direct proportion to the amount added, and nitrogen applied as sodium nitrate increased soil pH by between 0.5 and 1 unit.  相似文献   

15.
Seeds of red pine (Pinus densiflora Sieb. and Zucc.) were sown in red-yellow soil artificially adjusted to pH (H2O) 4.10, 4.60 or 5.90 by adding H2SO4 solution to the soil (pH 5.90), and the three-month seedlings were exposed to simulated acid rain at pH 2.0, 3.0 or 5.6 for 10 minutes once, 3 times a week, for 12 months from 4 August 1994 to 3 August 1995 alone or in combination. Significant interactive effects between acid rain and soil acidification on growth and whole-plant net photosynthetic rate, and cold death ratio of new apical shoots following a cold snap were observed in a quadratic response pattern. The simulated acid rain increased budburst, new needle spread and elongation, and new apical shoot death percentage following a cold snap, but did not induce visible injury. In the highest soil acidity treatment at a soil pH 4.1, whole-plant net photosynthetic rate and seedling height exhibited a quadratic responses with increasing rain acidities. On the other hand, soil acidification caused leaf yellowing. The death percentage of new apical shoot of seedlings exposed to rain pH 2.0 following a cold snap was linearly enlarged with increasing soil acidities. With increasing soil acidity, height and whole-plant net photosynthesis of the seedlings exposed to rain pH 3.0 exhibited a linear increase response, while height of seedlings exposed to control rain exhibited a quadratic response. It is suggested that the results provide experimental evidency for phenological disturbances and an enhancement of frost risk by direct acid rain and indirect longterm soil acidification which may be significant in forest decline.  相似文献   

16.
Summer and winter concentrations of acidic atmospheric species and their precursors were measured in central Ontario. Large seasonal differences in concentrations were observed for some species. The concentrations of primary emission species, S02 and NOx, were much larger in winter, whereas 03 and aerosol S04 were much reduced. HN03, PAN and aerosol N03 showed little seasonal change; PAN represented about 30% of the total oxidized nitrate. During pollution episodes and in summer, the molar ratio of nitrate (aerosol N03 plus HN03) to aerosol S04 was about 0.1 to 0.2; however, during winter, this molar ratio was about 1 to 2.  相似文献   

17.
Fogwater, fog drip and rainwater chemistry were examined at a tropical seasonal rain forest in Xishuangbanna, southwest China between November 2001 and October 2002. During the period of observation, 204 days with the occurrence of radiation fog were observed and the total duration of fog was 1949 h, of which 1618 h occurred in the dry season (November to April), accounting for 37.0% of the time during the season. The mean pH of fogwater, fog drip and rainwater were 6.78, 7.30, and 6.13, respectively. The ion with the highest concentration for fog- and rainwater was HCO3 ?, which amounted to 85.2 and 37.3 μeq l?1, followed by Ca2+, Mg2+ and NH4 +. Concentrations of NO3 ?, HCO3 ?, NH4 +, Ca2+, and K+ in fogwater samples collected in the dry season were significantly greater when compared to those collected in the rainy season. It was found that the ionic concentrations in fog drip were higher than those in fogwater, except for NH4 + and H+, which was attributed to the washout of the soil- and ash-oriented ions deposited on the leaves and the alkaline ionic emissions by the leaves, since biomass burns are very common in the region and nearby road was widening.  相似文献   

18.
Li  Jinhui  Tang  Hongxiao  Bai  Qingzhong  Nie  Yongfeng  Luan  Zhaokum 《Water, air, and soil pollution》2000,117(1-4):251-261
With the aggravation of acid rain pollution and the enlarging of the acid rain regions in China, the sensitivity evaluation of natural waters to acidification on a regional scale become increasingly important. Acidification models based on a single indicator cannot give much information on aquatic acidification because of their simplicity; yet acidification models based on physical, chemical, hydrological and/or biological processes are not suitable for large scale regional research because of their exceptional complexity. In this paper, a multi-indicator comprehensive model for aquatic acidification sensitivity is proposed and applied. This model comprises some of the most important factors that are considered to influence water acidification, in particular: acid neutralization capacity, acidification capacity, acidification sensitive index, cation exchange capacity of soil, pH of soil, and weathering shuck types of soil-forming. It highlights the key stages of aquatic acidification by acid neutralization capacity, acidification capacity, and acidification sensitivity index. The model thereby estimates the acidification sensitivity of natural waters by using these indicators according to a weighting system. Equal-weight and non-equal-weight approaches are separately used to combine the six indicators into an overall sensitivity index of aquatic acidification. The result derived from an application to China on a national scale indicates the practicability of this approach. In China, the sensitive natural waters emerge in Southern China, which is already a heavy acid rain region, and in Northeastern China where the rainwater is beginning to become much acidic.  相似文献   

19.
The effects of artificial acid rain on soil leachate composition were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. Increasing content of H2SO4 in the artificial rain increased the concentration of Ca2+ and Mg2+ in the leachate significantly. The pH of the leachate was slightly reduced only by the most acidic treatment (pH 3). The H+? retention was not accompanied by a proportionate increase in the Al ion concentration. A slight increase in the Al ion concentration was only observed in the leachate from the pH 3-treated lysimeter. We conclud that cation exchange and/or weathering were the main buffer mechanisms in the soil. The study supports conclusions from other acidification studies, that acidic precipitation is likely to increase the leaching of Ca2+ and Mg2+ from soils.  相似文献   

20.
The Laflamme Lake Watershed Area is located in a sensitive region on the Canadian Shield and is subjected to wet atmospheric loading between 17 and 25 kg ha?1 yr?1. From 1981 to 1988, the level and fluctuations of the atmospheric deposition of acidifying substances has led to various responses in the water chemistry of headwater lakes in the area. The general trend in atmospheric inputs is a gradual increase of acidifying substances from 1981 to 1985 followed by a 2 yr decrease then a return to previous values. In the two lakes with almost no alkalinity acidification has occured throughout the 1983 to 1988 period. In the four lakes with slightly higher alkalinity values, a reversal in acidification is seen when atmospheric loading decreased in 1986. Along with the interannual trends, seasonal variability to acidification occurs with sensitivity of surface waters being highest during spring melt. Sensitivity to acidification can also be altered by watershed processes and in the Laflamme Lake Watershed, soil processes are effective in altering the acidity of precipitation before it reached the lake. In this watershed, wet atmospheric inputs of H+ and NO3 ? are larger than surface water outputs while the reverse occurs for Ca2+, Mg2+, Na+, K+, Cl? and SO4 2?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号