首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
柴油机微粒捕集器喷油助燃再生过程热工特性   总被引:1,自引:1,他引:0  
为获得柴油机微粒捕集器喷油助燃再生过程热工变化特性,在考虑微粒氧化反应次模型的基础上,建立壁流式蜂窝陶瓷过滤体喷油助燃再生数学模型,通过对速度场、压力场、温度场与微粒浓度场等多场耦合求解,研究其再生过程热工参数变化规律。结果表明:喷油助燃装置热工参数、排气特征对过滤体再生过程影响较大。适当增大气油配比、提高喷油压力与喷油速率及加大补气流量均使再生过程中过滤体孔道壁面峰值温度升高,沉积在过滤体孔道壁面上的微粒层氧化燃烧速率加快,缩短过滤体的再生时间,但随着气油配比、补气流量的进一步增大,空气对流散热损失增强,及喷油速率进一步提高,混合气过浓导致燃烧器燃烧性能恶化等影响,孔道沉积微粒氧化速率、壁面峰值温度下降,再生速率降低。排气流量对再生过程的影响与补气流量相似,但从分析结果来看,排气流量能否合适控制对过滤体的再生过程有重要影响。这些规律的提出,为实现微粒捕集器安全、可靠、高效地再生及其过程控制的优化等方面提供依据和技术参考。  相似文献   

2.
微粒捕集器喷油助燃再生喷油与补气的优化控制   总被引:3,自引:2,他引:1  
为实现柴油机微粒捕集器喷油助燃再生的优化控制,该文基于原喷油量优化控制模型,在考虑补气的前提下,结合过滤体再生入口临界温度模型对其边界终止温度条件的强化,对微粒捕集器再生过程烟气最优升温速度曲线予以了改进,并获得了喷油量/补气量的最优控制目标函数。从其在线优化控制结果来看,喷油量最优值随再生时间变化呈先减小后增加的趋势。相应补气量变化趋势与最佳喷油量的变化一致,受排气氧含量富余程度影响,对应的补气量在越过最低点后增长的速度不一致。试验结果表明,对喷油量/补气量予以最优控制后,整个再生过程油耗可降低34.6%~40.2%。为提高整个微粒捕集器喷油助燃再生过程的操作水平和经济效益提供了参考。  相似文献   

3.
径向柴油机微粒捕集器流速分布特性数值分析   总被引:5,自引:3,他引:2  
为了得到径向柴油机微粒捕集器内流速分布特性,该文利用流体计算软件对一种可旋转径向式微粒捕集器内流速分布特性进行了数值研究,考察了排气流速、管道直径比、扩张角及载体长度等参数对微粒捕集器内流速分布的影响规律。在入口气流流速50 m/s条件下,测量了微粒捕集器各计算截面内流速分布情况,并且与计算值进行了比较,最大误差为3.2 m/s,在允许范围之内。结果表明,降低排气流速、减小管道直径比与扩张角、增加载体长度均有利于提高微粒捕集器内流速分布均匀性。该研究对控制微粒捕集器再生过程、提高过滤体利用率及微粒捕集器使用寿命有重要意义。  相似文献   

4.
铈基燃油催化剂改善柴油机颗粒物捕集器再生效果   总被引:6,自引:5,他引:1  
颗粒捕集器(diesel Particulate filter,DPF)是目前公认的最有效的柴油机排气颗粒物后处理装置,为了去除DPF内部沉积颗粒,实现DPF再生,采用提高排气温度或催化燃烧的方法来促进颗粒物燃烧。该文采用环烷酸铈溶剂作为燃油催化再生添加剂(fuel borne catalyst,FBC),对柴油机DPF的再生平衡温度、压降特性和燃烧灰烬等进行试验研究。试验结果表明:DPF再生平衡温度因FBC的催化作用从500 ℃以上下降到约450 ℃,从而增加了颗粒捕集器的颗粒储备能力,并能够有效再生;柴油机燃油消耗率随着排气背压的增加而上升;燃用FBC测试燃油时DPF前后压差较纯柴油上升缓慢,其达到排气背压再生阀值的周期变长;同时,随再生次数的增多,再生后DPF的前后压差呈线性增加,捕集效率却逐渐提高。该文采用燃油添加剂可以明显降低颗粒的着火点。结合电加热装置,可有效提高DPF的再生效果,有效过滤柴油车尾气中的颗粒物,对柴油车尾气净化及环境保护具有十分重要的意义。  相似文献   

5.
排气余热辅助低温等离子体再生柴油机颗粒捕集器试验   总被引:4,自引:2,他引:2  
为探究低温等离子体(non-thermal plasma,NTP)对无外加热源的柴油机颗粒捕集器(diesel particulate filter,DPF)的再生过程与再生效果,搭建了排气余热辅助NTP再生DPF的试验系统。借助发动机停机后的排气余热,利用DBD(dielectric barrier discharge)型NTP发生器,对处于降温过程的DPF进行再生试验研究。结果表明:随着DPF温度的下降,NTP中O3的分解反应减弱,PM(particulate matter)氧化反应加剧,DPF内部出现温度不降反升的现象,氧化区域自DPF前端逐渐向后端延伸,DPF径向中点处氧化反应最为剧烈,DPF轴向剖面上残余积碳呈现?形。再生后DPF内部残余积碳中可溶性有机成分SOF(soluble organic fraction)明显减少,且NTP处理能够降低PM中SOF及DS(dry soot)的表观活化能。整个再生过程中,DPF内部大量积碳被氧化去除。排气余热辅助的NTP再生技术,实现了对无外加热源的DPF的有效再生,使得DPF排气背压下降达69%。该文证实了排气余热辅助NTP再生DPF的可行性,为NTP再生DPF技术的应用提供了试验依据。  相似文献   

6.
为增大柴油车尾气微粒捕集器滤芯的过滤面积,降低滤芯的过滤阻力,提高滤芯的过滤效率,设计了一种内部具有中空通道的齿形木纤维柴油车尾气微粒捕集器滤芯。首先根据纤维材料的过滤理论,建立齿形木纤维滤芯的过滤效率模型;然后通过理论分析和数值计算得到滤芯过滤效率与各影响因素之间的关系曲线;最后利用自行研制的滤芯性能检测试验台对理论分析结果加以验证。研究表明,试验和理论结果吻合较好,当尾气微粒捕集器过滤室壳体尺寸为直径140 mm,高150 mm时,木纤维直径为15μm、滤芯填充率为0.3、滤芯厚度为12 mm时滤芯过滤效率和过滤阻力都处于较理想的范围,使用寿命可达60 h,过滤效率为96%,排气背压为3 k Pa,完全能满足柴油车尾气排放国家标准。该研究对柴油车尾气净化机及环境保护具有十分重要的意义。  相似文献   

7.
为了对比高原与平原环境下柴油机微粒捕集器(Diesel Particulate Filter,DPF)的主动再生温度特性差异,该研究通过台架试验对0、1 000和1 960m海拔下再生温度为550、575和600℃时DPF的载体温度特性及温度梯度的变化进行对比分析。结果表明:高原环境下,DPF载体的温度变化规律与平原环境一致,径向方向从DPF中心到边缘温度逐渐降低,轴向方向从DPF入口到出口温度逐渐升高,最高温度均出现在DPF出口中心;随着海拔高度升高,DPF载体的峰值温度和径向、轴向温度梯度均升高;海拔1 000 m时,550、575和600℃再生温度时的最大峰值温度比海拔0m时分别升高了4.6%、10.3%和16.6%,最大径向温度梯度分别升高了48.7%、118.9%和145.5%,最大轴向温度梯度分别升高了84.3%、81.6%和198.2%;海拔1 960 m时的最大峰值温度比海拔1 000 m时分别升高了6.3%、14.3%和17.2%,最大径向温度梯度比1 000 m时分别升高了65.5%、91.1%和166.9%,最大轴向温度梯度比海拔1000m时分别升高了20.2%、83.2%和43.2%。由于高原环境下柴油机氧化催化器(Diesel Oxidation Catalyst,DOC)的入口温度比平原环境下高,导致DPF的入口温度升高率、载体峰值温度和温度梯度均比平原的高。高原环境下更容易出现DPF损坏的危险。为保证DPF的安全可靠再生,海拔1 000 m时再生温度应低于600℃,海拔1 960 m时再生温度应低于575℃,以减小温度梯度,防止局部热应力过大。  相似文献   

8.
柴油机颗粒捕集器在再生阶段的温度预测问题直接与后处理系统甚至整车的经济性、安全性相关。该文采用仿真分析计算与发动机试验验证相结合的方式,对柴油机颗粒捕集器在再生阶段的温度特性及其影响因素进行分析。首先运用GT-Power软件对后处理系统进行建模,并分析了不同再生目标温度对再生效率的影响以及不同碳载量对稳态再生温度的影响。仿真结果表明:较高的再生目标温度有助于降低单位质量颗粒物的再生油耗,当再生目标温度为500 ℃时,单位质量颗粒物的再生油耗为372.7 g,当目标温度提高到700 ℃时该值降低至3.8g,但当目标温度达到600 ℃以上,再生目标温度对单位质量颗粒物再生油耗的改善效果不明显;当碳载量超过46 g(12.7 g/L)再生时,颗粒捕集器内部温度超过800 ℃,颗粒捕集器出现烧蚀失效的风险较高,因此应当限制触发再生的碳载量限值。在仿真计算结果的基础上,运用发动机台架试验对再生温度特性进行测试验证,试验结果与仿真结果较吻合,结果表明,该温度预测模型可对颗粒捕集器再生阶段的温度分布、再生油耗及最高温度等进行预测,对提高再生阶段燃油经济性,降低颗粒捕集器的烧蚀失效风险,具有重要的指导意义。  相似文献   

9.
为了提高柴油机颗粒捕集器(diesel particulate filter,DPF)的压降特性和碳烟承载量,该文提出了一种不规则六边形孔道结构,并利用AVL-Fire软件建立其三维模型,针对不同排气流量,排气温度,碳烟负载以及灰分堆积情况对DPF压降特性进行数值分析,并与四边形孔道结构进行对比。结果表明:在不同排气流量条件下,建立的数学模型模拟值与实际试验值相对误差处于2.54%~5.69%之间,计算值和试验值的数值差异较小,变化趋势一致;在同等排气流量和排气温度条件下,不规则六边形孔道结构DPF的压降特性优于四边形孔道结构;不同碳烟加载方式会影响DPF压降特性,递减分布压降最高,递增分布压降最低,且不同分布方式下不规则六边形孔道结构具有更低的压降;灰分在DPF内部以层状方式分布对压降影响较大,以尾端方式分布对压降影响较小;不规则六边形孔道DPF具有更陡峭的碳烟过滤效率曲线和更低的压降曲线,表明其能有效地提高碳烟及灰分承载能力,其中碳烟捕集效率上升时间同比降低34%;不同灰分堆积方式下,不规则六边形孔道结构有更小的DPF压降和更高的碳烟承载量,该文可为优化DPF结构,降低DPF压降,减小DPF再生频率提供参考。  相似文献   

10.
柴油机催化型颗粒捕集器喷油助燃再生特征   总被引:1,自引:1,他引:0  
针对在用车辆的排放升级改造,以及满足非道路移动源四阶段排放标准限制要求,该文基于自主开发的喷油助燃主动再生系统,开展了加装DPF(diesel particulate filter)和不同CDPF(catalyzed diesel particulate filter)后处理器的发动机外特性试验和喷油助燃主动再生燃烧试验。结果表明:催化剂负载量为530g/m~3的CDPF,对外特性下发动机的动力性和经济性影响较小,并为碳烟再生提供了充足的NO_2组分,因而其最大排气压差比DPF低8.8kPa。630℃时无二次供气的CDPF其再生效率高达96.4%,载体最高温度比DPF低31℃;采用二次供气速率1.25L/s、时长180s,继续供气速率0.625 L/s、时长420 s的再生方案,600℃时CDPF的再生效率为83.2%,载体最高温度比无二次供气时降低了64℃;进行停机再生与怠速再生时,催化剂负载量为530 g/m~3的CDPF具有更好的再生特性,其停机再生效率为76.4%,怠速再生效率达到88.5%。本研究对开发安全、高效的主动再生系统具有借鉴意义,并可为催化条件下的主动再生策略研究提供数据支撑。  相似文献   

11.

为研究柴油机颗粒物捕集器(diesel particulate filter,DPF)再生升温过程中排气热管理策略对柴油机氧化催化器(diesel oxidation catalyst,DOC)入口温度、发动机性能及污染物排放的影响,该研究分别选取低速低负荷、低速中负荷及中速低负荷工况,通过试验研究进气节流和喷油控制参数对DOC入口温度、燃油经济性及排放性能的影响。试验结果表明:通过进气节流、推迟后喷正时和增大后喷油量能够有效提高DOC入口温度,主喷正时和喷油压力对DOC入口温度的影响较小。基于Box-Behnken试验设计与响应曲面法对低速低负荷工况下进气节流耦合后喷策略的排气热管理策略进行多目标优化,以进气量、后喷正时和后喷油量为因子,DOC入口温度、有效燃油消耗率(brake specific fuel consumption,BSFC)、氮氧化合物(nitrogen oxides,NOx)和烟度排放为优化目标。响应曲面分析结果表明:各因素对DOC入口温度的影响程度从大到小为进气量、后喷油量、后喷正时;对BSFC和NOx排放的影响程度从大到小为后喷油量、后喷正时、进气量;对烟度排放的影响程度从大到小为进气量、后喷油量、后喷正时。当后喷正时为上止点后30 ℃A、进气量为87 kg/h、后喷油量为6 mg时,DOC入口温度达到最高,此时BSFC为275.4 g/(kW·h),NOx及烟度排放分别为7.38 g/(kW·h)和1.85 mg/m3。优化后最佳进气量、后喷正时和后喷油量分别为87 kg/h、29 ℃A和5.4 mg,与优化前相比,DOC入口温度提升43.9 ℃,BSFC增加31.8 g/(kW·h),NOx和烟度排放分别降低18%和29%。研究结果可为DOC入口温度优化控制提供参考。

  相似文献   

12.
研制了一种内部中空、外部为齿轮状的木纤维滤芯,建立基于阻力的柴油车尾气微粒捕集器(diesel particulate filter,DPF)滤芯的压力损失和结构参数模型,通过数值计算分析得到新型齿轮状木纤维滤芯的较优尺寸方案;并通过台架试验对不同结构参数滤芯的阻力变化进行对比分析,验证了该新型齿轮状木纤维滤芯的可靠性和科学性。分析结果表明,当DPF过滤室尺寸为直径140mm、高150mm时,新型齿轮状木纤维滤芯存在较优结构参数,即齿厚为23.27mm,齿高为30mm,齿边夹角为5°,滤芯厚度为7mm,齿数为8。该文所研制的齿轮型木纤维滤芯对油品质量要求低,过滤阻力小,过滤效率高,价格便宜,且废弃后易于回收再利用。结合温控装置使用,可有效过滤柴油车尾气中的PM,对柴油车尾气净化及环境保护具有十分重要的意义。  相似文献   

13.
为提升农用柴油机的DPF再生性能、排放和燃油经济性,提出了基于增强循环训练的智能多目标优化方法。通过BP神经网络构建了DPF再生条件预测模型,并提出AMSO算法提高预测精度。基于NSGA-III对多个控制参数进行优化,并通过稳态和WHTC瞬态循环试验验证。结果表明:在稳态试验验证中,优化后DPF入口和出口温度平均增加了6.10%和2.90%,O2浓度增加了18.86%,同时,NOx、烟度和BSFC的平均降低分别为10.72%、11.48%和0.24%,确保了DPF的高效安全再生。在瞬态测试验证中,DOC入口温度、DPF入口温度和O2浓度明显改善,分别增加了31.00%、2.60%和0.50%,同时,NOx和烟度排放分别降低了10.40%和0.80%,燃油消耗减少了3.5%。证明了提出的优化方法解决了农用柴油机DPF再生与排放优化问题,为柴油机再生模式下控制参数优化提供指导。  相似文献   

14.
为了改善发动机的冷起动性能以及有利于各工况切换时喷油的精确控制,该文针对采用高压共轨系统的柴油机,建立了基于模型的轨压控制策略,首先分析推导其数学模型;然后利用MATLAB/Simulink建立了轨压控制模型,轨压控制设计了前馈控制加反馈控制的轨压控制器,轨压反馈控制设计了传统的增量式PID(比例-积分-微分,proportion-integration-differentiation)控制器和模糊自适应PID控制器;最后对轨压控制模型进行了离线仿真验证;在此基础上利用硬件在环系统进行发动机台架试验,比较了2种控制器的控制效果。仿真和台架试验结果表明,模糊自适应PID控制器在目标轨压突变时的响应性(响应时间小于0.3 s)和跟随性以及稳定工况下轨压的稳定性(稳态误差小于2 MPa)方面都优于传统的增量式PID控制器,从而验证了控制策略模型的正确性。该研究提出的基于模型的轨压控制策略有助于实现柴油喷油的精确控制,可为柴油机共轨技术国产化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号