首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ellagitannin-containing foods (strawberries, walnuts, pomegranate, raspberries, oak-aged wine, etc.) have attracted attention due to their cancer chemopreventive, cardioprotective, and antioxidant effects. Ellagitannins (ETs) are not absorbed as such but are metabolized by the intestinal flora to yield urolithins (hydroxydibenzopyran-6-one derivatives). In this study, Iberian pig is used as a model to clarify human ET metabolism. Pigs were fed either cereal fodder or acorns, a rich source of ETs. Plasma, urine, bile, lumen and intestinal tissues (jejunum and colon), feces, liver, kidney, heart, brain, lung, muscle, and subcutaneous fat tissue were analyzed. The results demonstrate that acorn ETs release ellagic acid (EA) in the jejunum, then the intestinal flora metabolizes EA sequentially to yield tetrahydroxy- (urolithin D), trihydroxy- (urolithin C), dihydroxy- (urolithin A), and monohydroxy- (urolithin B) dibenzopyran-6-one metabolites, which were absorbed preferentially when their lipophilicity increased. Thirty-one ET-derived metabolites were detected, including 25 urolithin and 6 EA derivatives. Twenty-six extensively conjugated metabolites were detected in bile, glucuronides and methyl glucuronides of EA and particularly urolithin A, C, and D derivatives, confirming a very active enterohepatic circulation. Urolithins A and B as well as dimethyl-EA-glucuronide were detected in peripheral plasma. The presence of EA metabolites in bile and in urine and its absence in intestinal tissues suggested its absorption in the stomach. Urolithin A was the only metabolite detected in feces and together with its glucuronide was the most abundant metabolite in urine. No metabolites accumulated in any organ analyzed. The whole metabolism of ETs is shown for the first time, confirming previous studies in humans and explaining the long persistency of urolithin metabolites in the body mediated by an active enterohepatic circulation.  相似文献   

2.
Pomegranate ellagitannins (ETs) are transformed in the gut to ellagic acid (EA) and its microbiota metabolites, urolithin A (Uro-A) and urolithin B (Uro-B). These compounds exert anti-inflammatory effects in vitro and in vivo. The aim of this study was to investigate the effects of Uro-A, Uro-B, and EA on colon fibroblasts, cells that play a key role in intestinal inflammation. CCD18-Co colon fibroblasts were exposed to a mixture of Uro-A, Uro-B, and EA, at concentrations comparable to those found in the colon (40 μM Uro-A, 5 μM Uro-B, 1 μM EA), both in the presence or in the absence of IL-1β (1 ng/mL) or TNF-α (50 ng/mL), and the effects on fibroblast migration and monocyte adhesion were determined. The levels of several growth factors and adhesion cytokines were also measured. The mixture of metabolites significantly inhibited colon fibroblast migration (~70%) and monocyte adhesion to fibroblasts (~50%). These effects were concomitant with a significant down-regulation of the levels of PGE(2), PAI-1, and IL-8, as well as other key regulators of cell migration and adhesion. Of the three metabolites tested, Uro-A exhibited the most significant anti-inflammatory effects. The results show that a combination of the ET metabolites found in colon, urolithins and EA, at concentrations achievable in the intestine after the consumption of pomegranate, was able to moderately improve the inflammatory response of colon fibroblasts and suggest that consumption of ET-containing foods has potential beneficial effects on gut inflammatory diseases.  相似文献   

3.
Dietary ellagic acid and related polyphenols are metabolized in humans to dibenzopyran-6-one derivatives, and the microbial origin of these metabolites has been suggested. However, this has not been demonstrated so far. Fecal samples donated by six volunteers were incubated under anaerobic conditions, and aliquots were used to evaluate the fecal metabolism of ellagic acid, the ellagitannin punicalagin, and an ellagitannin rich extract from walnuts. The isoflavone daidzein was also incubated with the same fecal samples to follow the production of the microbial metabolites previously reported (dihydrogenistein, O-demethylangolensin, and equol) as a positive control of the system and to evaluate similarities between isoflavone and ellagic acid fecal flora metabolism. After fermentation the metabolite "urolithin A" (3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one) was produced from ellagic acid, punicalagin, and the ellagitannin extract in all the fecal cultures from different volunteers, but with very different production rates and concentrations. This large variability in the concentration of metabolite and kinetics of metabolite production is consistent with the large variability found in the excretion of these metabolites in urine in vivo after human consumption of ellagitannins, and with differences in the composition of the fecal microflora. No correlation between isoflavone and ellagic acid metabolism by fecal microflora was observed. The present study confirms the microbial origin of the recently reported in vivo generated hydroxy-6H-dibenzo[b,d]pyran-6-one derivatives in humans and is a further step in the study of the bioavailability and metabolism of ellagic acid and ellagitannins.  相似文献   

4.
Urolithins A and B (hydroxy-6H-dibenzo[b,d]pyran-6-one derivatives) are colonic microflora metabolites recently proposed as biomarkers of human exposure to dietary ellagic acid derivatives. Molecular models suggest that urolithins could display estrogenic and/or antiestrogenic activity. To this purpose, both urolithins and other known phytoestrogens (genistein, daidzein, resveratrol, and enterolactone) were assayed to evaluate the capacity to induce cell proliferation on the estrogen-sensitive human breast cancer MCF-7 cells as well as the ability to bind to alpha- and beta-estrogen receptors. Both urolithins A and B showed estrogenic activity in a dose-dependent manner even at high concentrations (40 microM), without antiproliferative or toxic effects, whereas the other phytoestrogens inhibited cell proliferation at high concentrations. Overall, urolithins showed weaker estrogenic activity than the other phytoestrogens. However, both urolithins displayed slightly higher antiestrogenic activity (antagonized the growth promotion effect of 17-beta-estradiol in a dose-dependent manner) than the other phytoestrogens. The IC(50) values for the ERalpha and ERbeta binding assays were 0.4 and 0.75 microM for urolithin A; 20 and 11 microM for urolithin B; 3 and 0.02 for genistein; and 2.3 and 1 for daidzein, respectively; no binding was detected for resveratrol and enterolactone. Urolithins A and B entered into MCF-7 cells and were metabolized to yield mainly urolithin-sulfate derivatives. These results, together with previous studies regarding absorption and metabolism of dietary ellagitannins and ellagic acid in humans, suggest that the gut microflora metabolites urolithins are potential endocrine-disrupting molecules, which could resemble other described "enterophytoestrogens" (microflora-derived metabolites with estrogenic/antiestrogenic activity). Further research is warranted to evaluate the possible role of ellagitannins and ellagic acid as dietary "pro-phytoestrogens".  相似文献   

5.
Our group has shown in a phase II clinical trial that pomegranate juice (PJ) increases prostate specific antigen (PSA) doubling time in prostate cancer (CaP) patients with a rising PSA. Ellagitannins (ETs) are the most abundant polyphenols present in PJ and contribute greatly towards its reported biological properties. On consumption, ETs hydrolyze to release ellagic acid (EA), which is then converted by gut microflora to 3,8-dihydroxy-6H-dibenzo[b, d]pyran-6-one (urolithin A, UA) derivatives. Despite the accumulating knowledge of ET metabolism in animals and humans, there is no available data on the pharmacokinetics and tissue disposition of urolithins. Using a standardized ET-enriched pomegranate extract (PE), we sought to further define the metabolism and tissue distribution of ET metabolites. PE and UA (synthesized in our laboratory) were administered to C57BL/6 wild-type male mice, and metabolite levels in plasma and tissues were determined over 24 h. ET metabolites were concentrated at higher levels in mouse prostate, colon, and intestinal tissues as compared to other tissues after administration of PE or UA. We also evaluated the effects of PE on CaP growth in severe combined immunodeficient (SCID) mice injected subcutaneously with human CaP cells (LAPC-4). PE significantly inhibited LAPC-4 xenograft growth in SCID mice as compared to vehicle control. Finally, EA and several synthesized urolithins were shown to inhibit the growth of human CaP cells in vitro. The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomegranate may play a role in CaP treatment and chemoprevention. This warrants future human tissue bioavailability studies and further clinical studies in men with CaP.  相似文献   

6.
Oak leaves have a high concentration of ellagitannins. These phytochemicals can be beneficial or poisonous to animals. Beef cattle are often intoxicated by oak leaf consumption, particularly after suffering feed restriction. The severity of the poisoning has recently been associated with the ruminal microbiota, as different bacterial populations were found in animals that tolerated oak leaves and in those that showed clinical and pathological signs of toxicity. Intoxication has previously been linked to the production of phenolic metabolites, particularly catechol, phloroglucinol, and resorcinol. This suggested that the microbial metabolism of ellagitannins could also be associated with its tolerance or intoxication in different animals. Therefore, it is essential to understand the metabolism of ellagitannins in cattle. Here we show that ellagitannins are metabolized in the cattle rumen to urolithins. Different urolithins were detected in ruminal fluid, feces, urine, and plasma. Oak leaf ellagitannins declined as they were converted to urolithins, mainly isourolithin A and urolithin B, by the ruminal and fecal microbiota. Urolithin aglycons were observed in rumen and feces, and glucuronide and sulfate derivatives were detected in plasma and urine. Sulfate derivatives were the main metabolites detected in plasma, while glucuronide derivatives were the main ones in urine. The main urolithins produced in cattle were isourolithin A and urolithin B. This is a relevant difference from the monogastric mammals studied previously in which urolithin A was the main metabolite produced. Low molecular weight phenolics of the benzoic, phenylacetic, and phenylpropionic groups and metabolites such as catechol, resorcinol, and related compounds were also detected. There was a large variability in the kinetics of production of these metabolites in individual animals, although they produced similar metabolites in all cases. This large variability could be associated with the large variability in the rumen and intestine microbiota that has previously been observed. Further studies are needed to demonstrate if the efficiency in the metabolism of ellagitannins by the microbiota could explain the differences observed in susceptibility to intoxication by the different animals.  相似文献   

7.
Plasma and urine were collected over a 24 h period after the consumption by humans of 200 g of strawberries, containing 222 micromol of pelargonidin-3- O-glucoside, with and without cream. The main metabolite, a pelargonidin- O-glucuronide, reached a peak plasma concentration ( C max) of 274 +/- 24 nmol/L after 1.1 +/- 0.4 h ( t max) when only strawberries were ingested. When the strawberries were eaten with cream, the C max was not statistically different but the t max at 2.4 +/- 0.5 h was delayed significantly ( p < 0.001). The pelargonidin- O-glucuronide, along with smaller quantities of other metabolites, was also excreted in urine in quantities corresponding to ca. 1% of anthocyanin intake. The quantities excreted over the 0-24 h collection period were not influenced significantly by cream. However, the 0-2 h excretion of anthocyanin metabolites was significantly lower when the strawberries were eaten with cream, whereas the reverse occurred during with the 5-8 h excretion period. In keeping with these observations, measurement of plasma paracetamol and breath hydrogen revealed that cream delayed gastric emptying and extended mouth to cecum transit time.  相似文献   

8.
The intake of polyphenols has been demonstrated to have health-promoting and disease-preventive effects. The pomegranate (Punica granatum L.), which is rich in several polyphenols, has been used for centuries in ancient cultures for its medicinal purposes. The potential health benefits of pomegranate polyphenols have been demonstrated in numerous in vitro studies and in vivo experiments. This study investigated the absorption and antioxidant effects of a standardized extract from pomegranate in healthy human volunteers after the acute consumption of 800 mg of extract. Results indicate that ellagic acid (EA) from the extract is bioavailable, with an observed C(max) of 33 ng/mL at t(max) of 1 h. The plasma metabolites urolithin A, urolithin B, hydroxyl-urolithin A, urolithin A-glucuronide, and dimethyl ellagic acid-glucuronide were identified by HPLC-MS. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 32% after 0.5 h, whereas the generation of reactive oxygen species (ROS) was not affected. The inflammation marker interleukin-6 (IL-6) was not significantly affected after 4 h after the consumption of the extract. Overall, this study demonstrated the absorbability of EA from a pomegranate extract high in ellagitannin content and its ex vivo antioxidant effects.  相似文献   

9.
Fagopyritols are mono-, di-, and trigalactosyl derivatives of D-chiro-inositol that accumulate in seeds of common buckwheat (Fagopyrum esculentum Moench) and may be important for seed maturation and as a dietary supplement. Fagopyritols and other soluble carbohydrates were assayed in mature groats and 11 milling fractions of common buckwheat seed. Because fagopyritols are in embryo and aleurone tissues, differences in fagopyritol concentrations reflect varying proportions of these tissues in each milling fraction. Bran milling fractions contained 6.4 g of total soluble carbohydrates per 100 g of dry weight, 55% of which was sucrose and 40% fagopyritols. Flour milling fractions had reduced fagopyritol concentration [0.7 g/100 g of dry weight total fagopyritols in the dark (Supreme) flour and 0.3 g/100 g in the light (Fancy) flours]. Fagopyritol B1 was 70% of total fagopyritols in all milling fractions. Fagopyritols were 40% of total soluble carbohydrates in groats of two cultivars of common buckwheat but 21% in groats of tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.], probably a reflection of environment and genetics. A rhamnoglucoside present in tartary buckwheat was not detected in common buckwheat.  相似文献   

10.
This study investigates the antioxidant activity and cytotoxicity of Glossogyne tenuifolia extract on various cancer cell lines. The 5.8s DNA of G. tenuifolia was isolated, and the species of this plant was confirmed by NCBI's DNA database. G. tenuifolia was then extracted with ethanol and separated into several fractions using the partition procedure with water, n-butanol, and ethyl acetate (EA). Among these, the EA fraction most significantly affected the activity of DPPH(*) and superoxide anion scavenging. Additionally, only the EA fraction exhibited cytotoxicity on breast cancer cells (MCF-7 and MDA-MB-231) and liver cancer cells (Hep G2 and Hep 3B). Next, the EA fraction was further separated by column chromatography, and 15 fractions were obtained. Three effective components were isolated and identified separately from the active fractions: oleanolic acid (OA) from fraction 6, luteolin from fractions 8-10, and luteolin-7-glucoside from fraction 12. The test of these three compounds on scavenging activity of DPPH(*) and superoxide anion indicates that luteolin had the highest antioxidant activity, whereas the effect of OA was negligible. Additionally, a synergistic effect between luteolin and luteolin-7-glucoside was observed. Kick-out experiments showed that the activities were vanished or decreased. Especially on MDA-MB-231 and MCF-7 cells, the cytotoxicity completely disappeared when luteolin was eliminated from fractions 8-10. These findings demonstrate that luteolin plays a crucial role in the inhibition of the growth of hepatoma cancer cell lines. Fraction 3, which did not contain luteolin, luteolin-7-glucoside, and oleanolic acid, had cytotoxicity on MDA-MB-231, MCF-7, Hep G2, Hep 3B, and A549, which implies that this fraction contained some other effective ingredients and requires further study. The investigation is currently underway in our laboratory.  相似文献   

11.
《Cereal Chemistry》2017,94(2):291-297
Edible beans are among the most important grain legumes consumed by humans. To provide new information on the antioxidant phenolics of edible beans, the antioxidant capacity, total phenolic content (TPC), and total flavonoid content (TFC) in both soluble and bound fractions of 42 edible beans from China were systematically evaluated, with main phenolic compounds identified and quantified in 10 beans possessing the highest TPC. Edible beans contained a wide range of total antioxidant capacity and TPC generally comparable with common grains, fruits, and vegetables, and their bound fractions had significant antioxidant capacity, TPC, and TFC. Red sword bean was found for the first time to show extremely high total antioxidant capacity (ferrous[II] at 235 ± 13.2 μmol/g and Trolox at 164 ± 10.5 μmol/g) and TPC (1767 ± 58.3 mg of GAE/100 g). Phenolic compounds such as catechin, ferulic acid, gallic acid, p‐coumaric acid, and protocatechuic acid were widely detected in selected beans. A positive correlation was found between antioxidant capacity (ferric‐reducing antioxidant power [FRAP] and Trolox equivalent antioxidant capacity [TEAC] values) and TPC, with correlation coefficient r = 0.974 (FRAP value versus TPC) and r = 0.914 (TEAC value versus TPC). Therefore, beans with high antioxidant capacity and phenolic content can be valuable sources of dietary natural antioxidants for the prevention of oxidative stress‐related chronic diseases.  相似文献   

12.
Previous study demonstrated that 4-methylspinaceamine (4-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine), a Pictet-Spengler condensation reaction product of histamine with acetaldehyde, is present in human urine. The current study sought to determine whether 4-methylspinaceamine is present in fermented foods; its presence might be expected since both histamine and acetaldehyde are often present in these foods. Soy sauce, fish sauce, cheese, and shao hsing wine (Chinese wine) were found to contain 4-methylspinaceamine. The concentration of 4-methylspinaceamine excreted in human urine was greatly elevated after ingestion of a meal containing soy sauce as a dietary source of 4-methylspinaceamine, demonstrating that the level of 4-methylspinaceamine in human urine was affected by dietary foods. In addition, a metabolite of 4-methylspinaceamine in human urine was investigated. An enhanced peak in the HPLC chromatogram of human urine samples after ingestion of 4-methylspinaceamine-containing foods was observed. A peak at the same retention time was also observed from a human urine sample after administration of 4-methylspinaceamine, suggesting that the peak was due to a metabolite. By comparison with the newly synthesized authentic compound, the metabolite was identified as 1,4-dimethylspinaceamine.  相似文献   

13.
This study aimed at developing a sensitive LC-MS/MS method for the quantification of sulforaphane (SFN) and indole-3-carbinol metabolites in plasma and urine after dietary intake of regular and selenium-fertilized broccoli using stable isotope dilution analysis. In a three-armed, placebo-controlled, randomized human intervention study with 76 healthy volunteers, 200 g of regular (485 μg of total glucosinolates and <0.01 μg of selenium per gram fresh weight) or selenium-fertilized broccoli (589 μg of total glucosinolates and 0.25 μg of selenium per gram fresh weight) was administered daily for 4 weeks. Glucoraphanin and glucobrassicin metabolites quantified in plasma and urine were SFN-glutathione, SFN-cysteine, SFN-cysteinylglycine, SFN-acetylcysteine, and indole-3-carboxaldehyde, indole-3-carboxylic acid, and ascorbigen, respectively. Dietary intake of selenium-fertilized broccoli increased serum selenium concentration analyzed by means of atomic absorption spectroscopy by up to 25% (p < 0.001), but affected neither glucosinolate concentrations in broccoli nor their metabolite concentrations in plasma and urine compared to regular broccoli.  相似文献   

14.
Low levels of pesticides and their metabolites/degradates occur in produce when pesticides are used in conventional or organic crop protection. Human dietary and nonoccupational urine biomonitoring studies may be confounded by preformed pesticide biomarkers in the diet. The extent of formation of putative urine biomarkers, including malathion specific (MMA, MDA; malathion mono- and diacids), organophosphorus generic (DMP, DMTP, DMDTP; dimethyl-, dimethylthio-, and dimethydithiophosphate), pyrethroid generic (3-PBA; 3-phenoxybenzoic acid), and captan-specific metabolites (THPI; tetrahydrophthalimide), was measured in produce samples containing the parent pesticide. Every produce sample of 19 types of fruits and vegetables contained biomarkers of potential human exposure. A total of 134 of 157 (85%) samples contained more molar equivalent biomarkers than parent pesticide. Malathion and fenpropathrin were sprayed (1 lb/A), and the time-dependent formation of pesticide biomarkers in strawberries was investigated under field conditions typical of commercial production in California. Malathion and fenpropathrin residues were always below established residue tolerances. Malathion, MMA, and MDA dissipated, while DMP, DMTP, and DMDTP increased, during a 20 day study period following the preharvest interval. The mole ratios of biomarkers/(malathion + malaoxon) were always greater than 1 and increased from day 4 to day 23 postapplication. Fenpropathrin and 3-PBA also dissipated in strawberries during each monitoring period. The mole ratios of 3-PBA/fenpropathrin were always less than 1 and decreased from day 4 to day 14. The absorption of pesticide biomarkers in produce and excretion in urine would falsely indicate consumer pesticide exposure if used to reconstruct dose for risk characterization.  相似文献   

15.
Trace residues of organophosphorus (OP) pesticides are associated with fruits and vegetables that have been sprayed with those OP pesticides to guard against insect pests. Human dietary exposure to these OP pesticides is commonly estimated by measuring the amount of OP metabolites in urine, assuming a stoichiometric relationship between a metabolite and its parent insecticide. Dialkylphosphates (DAPs) are the OP metabolites that are most often used as markers in such biomonitoring studies. However, abiotic hydrolysis, photolysis, and plant metabolism can convert OP chemicals (OP residues) to DAP residues on or in the fruits and vegetables. To evaluate the extent of these conversions, OPs and DAPs were measured in 153 produce samples. These samples from 2 lots were known to contain OP insecticide residues based on routine monitoring by California producers and shippers. A total of 12 OPs were quantified, including mevinphos, naled, acephate, methamidophos, oxidemeton-methyl, azinphos-methyl, dimethoate, malathion, methidathion, phosmet, chlorpyrifos, and diazinon. All OP insecticide residues were below their respective residue tolerances in 2002-2004. A total of 91 of 153 samples (60%) contained more DAP residues than parent OPs. The mean mole fractions [DAPs/(DAPs + OPs)] for the first and second lots of produce were 0.62 and 0.50, respectively, and the corresponding geometric means were 0.55 and 0.34. The corresponding mean mole ratios (DAPs/OP) were 7.1 and 3.4, with geometric means of 2.1 and 0.9. Any preformed DAPs ingested in the diet that are excreted in urine may inflate the estimated absorbed OP insecticide doses in occupational and environmental studies. In subsequent prospective studies, time-dependent production of dimethylphosphate (DMP) and dimethylthiophosphate (DMTP) in strawberries and leaves following malathion sprays occurred concomitant with the disappearance of the parent insecticide and its oxon. DAPs are more persistent in plants and produce at routinely measured levels than their parent OP insecticides.  相似文献   

16.
Folate concentrations in strawberries and folate retention during storage and commercial processing of strawberries were investigated. No previous study has focused on the effects of cultivar, ripeness, and year of harvest of strawberries with respect to the folate content. This study showed the folate concentration in strawberries to significantly depend on all of these different factors. Total folate was quantified using a modified and validated radioprotein-binding assay with external calibration (5-CH(3)-H(4)folate). Folate content in 13 different strawberry cultivars varied from 335 microg/100 g of dry matter (DM) for cv. Senga Sengana to 644 microg/100 g of DM for cv. Elsanta. Swedish harvests from 1999 and 2001 yielded higher folate concentrations than did the harvest from 2000, and the grade of ripeness affected the folate content in strawberries. This study indicated high folate retention in intact berries during storage until 3 or 9 days at 4 degrees C (71-99%) and also in most tested commercial products (79-103%). On the basis of these data fresh strawberries as well as processed strawberry products are recommended to be good folate sources. For instance, 250 g (fresh weight) of strawberries ( approximately 125 microg of folate) supplies approximately 50% of the recommended daily folate intake in various European countries (200-300 microg/day) or 30% of the U.S. recommendation (400 microg/day).  相似文献   

17.
Toxicokinetic behavior and metabolism studies of metamitron and its effect on the cytochrome P(450) content of liver microsomal pellet were carried out in black Bengal goats after a single oral administration at 278 mg kg(-1) and consecutive oral administration of 30 mg kg(-1) for 7 days. Metamitron was detected in the blood sample at 0.08 h (12.0 +/- 0.87 microg mL(-1)), maximum at 4 h (84.3 +/- 8.60 microg mL(-1)) and minimum (14.6 +/- 1.67 microg mL(-1)) at 36 h blood sample after a single oral administration. The absorption rate constant was 0.69 +/- 0.09 h(-1). The Vd(area) (2.00 +/- 0.08 L kg(-1)) and t(1/2)beta (8.98 +/- 0.70 h) values suggested wide distribution and long persistence of the compound in the body. The values of T approximately B (0.80 +/- 0.04), F(c) (0.55 +/- 0.01), Cl(B) (0.15 +/- 0.00 L kg(-1) h(-1)), and K(21) (0.41 +/- 0.03 h(-1)) suggested that metamitron retained in the blood compared to that in the tissue. Maximum concentration of metamitron residue was found in the adrenal gland followed by bile on day 4 of single oral administration. The higher Cl(R) compared to Cl(H) value indicated the excretion of the major portion (34-40%) through urine compared to feces (20-26%). Maximum concentrations of metamitron and its metabolite, deaminometamitron, were excreted through urine and feces at 48 and 24 h samples, respectively. The recovery of metamitron including its metabolite in terms of parent compound varied from 69.3 to 80.1%, of which contribution of metabolite in terms of parent compound varied from 53.1 to 63.0%. Repeated oral administration of metamitron at 30 mg kg(-1) for 7 days caused induction of the cytochrome P(450) content of liver microsomal pellet of goat, suggesting oxidative deamination of metamitron.  相似文献   

18.
A variety of studies have suggested a cancer protective role of cruciferous vegetables. In the present study, we investigated the effect of indole-3-carbinol (I3C), a major indole metabolite in cruciferous vegetables, on cell proliferation and in vitro markers of angiogenesis in phorbol myristate acetate (PMA)-stimulated endothelial EA hy926 cells. The results showed that I3C inhibited the growth of EA hy926 cells in a concentration-dependent manner. The capillary-like tube formation by PMA-activated endothelial cells was significantly suppressed by I3C, and such inhibition was associated with decreased vascular endothelial growth factor (VEGF) and increased interleukin-8 (IL-8) secretion, but not with the expression of VEGF receptor-2 protein. Additionally, gelatin zymography analysis indicated that I3C suppressed activities of matrix metalloproteinases-2 (MMP-2) and MMP-9 stimulated by PMA. These results suggest that the dietary I3C may be useful in the treatment of human cancers and angiogenic diseases.  相似文献   

19.
A sensitive liquid chromatographic (LC) method with UV detection was developed for the determination of residues of lidocaine (LID) and its major metabolite, monoethylglycinexylidide (MEGX), in elk velvet antler. The drugs were extracted from alkaline velvet antler homogenates, cleaned up on a C(18) solid-phase extraction cartridge, and separated on an Inertsil ODS-3 (3.0 x 250 mm, 5 microm) column using an isocratic mobile phase made up of 0.05 M phosphate buffer (pH 4.0)/acetonitrile (88:12, v/v) at a flow rate of 1.0 mL/min. The limits of quantification for LID and its major metabolite, MEGX, were 10 and 20 ng/g, respectively. The method was validated and used to measure the concentration of residues of LID and MEGX in elk velvet antlers harvested after either LID anesthesia or application of a drug-free control method (electro-anesthesia, EA). No LID or MEGX residues were detected in any of the antlers harvested after EA application. No MEGX residues were detected in any of the velvet antlers harvested after LID application, but residues of LID ranging in concentration from 68 to 4300 ng/g were detected in the three sections of the velvet antlers harvested after LID administration. LC-tandem mass spectrometry was used to confirm the presence of lidocaine detected in the velvet antlers.  相似文献   

20.
In addition to the 16 previously reported polyphenols including 3 new ellagitannins, 2 novel dicarboxylic acid derivatives, glansreginins A (1) and B (2), and a new dimeric hydrolyzable tannin, glansrin D (3), were isolated, together with 15 known compounds from walnuts, the seeds of Juglans regia. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR analyses and chemical data. The antioxidant effect of these isolates was also evaluated by SOD-like and DPPH radical scavenging activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号