首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The critical load concept is now accepted throughout Europe as a means of estimating the sensitivity of key components of aquatic and terrestrial ecosystems to atmospheric inputs of sulphur (S) and nitrogen (N). Current UK freshwater maps, based on steady-state water chemistry, are derived using a critical acid neutralising capacity (ANCLIM) value of zero eql–1, which is based on the probability of occurrence of salmonid fish in lakes. In practice most acidification damage to salmonid fish occurs in nursery streams at the emergence and first feeding stages. In general a clear relationship exists between salmon (Salmo salar L.) and trout (S. trutta L.) densities in Scottish streams and ANC values. However, differences between sites depend on which ANC value is used (eg maximum, minimum or mean). By contrast, when the exceedance of critical loads is compared with salmonid densities the relationship is less clear because many exceeded sites have good salmonid densities. Many of these latter sites are found in north-west Scotland where sea-salt inputs are high and ANC is usually greater than zero eql–1, although diatom-based studies indicated slight acidification of these waters, with a point of change in diatom flora close to ANC=20 eql–1. These false exceedances are probably due to preferential adsorption of acidic SO4 deposition which results in an overestimate of exceedance values. All sites with a mean ANC 0 are fishless but some sites with negative minimum ANC values had normal salmonid densities. Consequently a mean ANCLIM value of zero in the critical load equations for UK freshwaters appears to be too low to protect salmonid stocks. Values between 20–50 eql–1 represent a more realistic range if prevention of long term damage to salmonid stocks is to be achieved.  相似文献   

2.
Condition factor, K, was measured for 1202 blacknose dace (Rhinichthys atratulus) from three streams in Shenandoah National Park (USA) of different acid neutralizing capacities (ANCs). K is a ratio of weight standardized to length; it is an indication of the health of the individuals in a population. R. atratulus condition factor in the low-ANC stream was found to be significantly lower (11%) than that of dace measured for fish from the intermediate- and high-ANC streams. This difference, according to the results of related investigations, is likely to be biologically significant. Whole-body sodium concentrations were measured as an additional test of sublethal stress in these streams. During summer base flow conditions, mean whole-body sodium concentrations of adult R. atratulus maintained in cages were found to be highest in the low-ANC stream and lowest in the high-ANC stream. The lower condition factor of dace in the low-ANC stream may be related to whole-body sodium concentration and ion regulation. Ion regulation in the low-ANC stream may be more metabolically costly because of chronic sublethal pH stress. R. atratulus may maintain high body Na+ concentrations in low ANC- and ionic strength waters in order to provide a buffer against large episodic pH depressions. The metabolic cost of this ionoregulatory over-compensation may necessitate the diversion of energy from somatic growth and explain the poorer condition of fish from such waters.  相似文献   

3.
Long-term changes in the chemistry of precipitation (1978–94) and 16 lakes (1982–94) were investigated in the Adirondack region of New York, USA. Time-series analysis showed that concentrations of SO4 2–, NO3 , NH4 + and basic cations have decreased in precipitation, resulting in increases in pH. A relatively uniform rate of decline in SO4 2– concentrations in lakes across the region (1.81±0.35 eq L–1 yr–1) suggests that this change was due to decreases in atmospheric deposition. The decrease in lake SO4 2– was considerably less than the rate of decline anticipated from atmospheric deposition. This discrepancy may be due to release of previously deposited SO4 2– from soil, thereby delaying the recovery of lake water acidity. Despite the marked declines in concentrations of SO4 2– in Adirondack lakes, there has been no systematic increase in pH and ANC. The decline in SO4 2– has corresponded with a near stoichiometric decrease in concentrations of basic cations in low ANC lakes. A pattern of increasing NO3 concentrations that was evident in lakes across the region during the 1980's has been followed by a period of lower concentrations. Currently there are no significant trends in NO3 concentrations in Adirondack lakes.  相似文献   

4.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   

5.
Summary The influence of the partial pressure of oxygen on denitrification and aerobic respiration was investigated at defined P02 values in a mull rendzina soil. The highest denitrification and respiration rates obtained in remoistened, glucose- and nitrate-amended soil were 43 1 N20 h–1g–1 soil and 130 1 O2 h–1g–1 soil, respectively. At -55 kPa matric water potential, corresponding to 40% water saturation, N20 was produced only below P02 40 hPa. The K m, for O2 was 3.0 x 106 M. Formation of N2O and consumption of O2 occurred simultaneously with half maximum rates at P02 6.7–13.3 hPa. Nitrite accumulated in soil below 40 hPa and increased with decreasing pO2. The upper threshold for N20 formation in amended soil was P02 33–40 hPa (39-47 M O2).  相似文献   

6.
Summary Physiological and symbiotic characteristics were identified in Rhizobium fredii isolated from subtropical-tropical soils. The generation times of R. fredii Taiwan isolated-SB 357 and -SB 682 were 1.7 and 2.5 h, respectively. These strains were associated with acid production in yeast-extract mannitol medium. They were able to use hexoses, pentose, sucrose, trehalose and raffinose. Strain SB 357 can resist a high concentration of kanamycin (100 g ml–1 and penicillin (400 g ml–1). It can tolerate up to 2.34% NaCl and 1031.3 mosmol kg–1 (23.4 bars). The growth rate of R. fredii SB 357 under the concentration of approximately 450 mosmol kg–1 (10.2 bars) was not affected by salinity, but responded to osmotic pressure. Both strains (SB 357 and SB 682) isolated from subtropical-tropical soils were able to form an effective N2-fixing symbiosis with the US soybean cv Clark lanceolate leaflet.  相似文献   

7.
Summary Fifty-six isolates of Rhizobium and Bradyrhizobium spp. (Cajanus) were studied for their plasmid profile and N2-fixation efficacy. One to three plasmids were reproducibly detected in all the Rhizobium spp. strains but no plasmid was detected in the Bradyrhizobium spp. strains. Rhizobium sp. strain P-1 was mutagenized by Tn5 and three nod and six nod+fix were screened for symbiotic parameters. Neomycin-sensitive mutants were isolated by elevated temperatrue (40°C) from tranconjugants carrying Tn5 insertions. The high temperature cured these mutants from the single large plasmid present in the parent strain P-1. All these cured mutants were nod, indicating that the genes for nodulation were present on this plasmid, which is readily cured at a high temperature (40°C). The high temperature in the semi-arid zones of Haryana could be responsible for the low nodulation of pigeonpea because the plasmid carrying the nodulation genes is cured at 40°–45°C giving rise to non-nodulating mutants.  相似文献   

8.
Chemical Composition of Precipitation in Beijing Area, Northern China   总被引:1,自引:0,他引:1  
Variations of anions (SO4 2-, NO3 -,NO2 -, Cl- and F-),cations (K+,Na+, Ca2+, Mg2+ and +) and pH values in precipitation, througfall and stemflow samples collected overa four-year period (1995–1998) in Beijing (two sitesZhongguancun and Mangshan) are presented. The annualvolume-weighted range of pH values were 6.57–7.11 inprecipitation, 5.46–6.86 in thoughfall and 5.32–6.41 instemflow. The fominant anion was , while Ca+and NH4 + were the main cations in precipitation,throughfall and stemflow. Most of ion concentrations with precipitation, throughfall and stemflow volume showed negative correlation, except for some ones. Significant correlationvalues were also found between ions (SO4 2-,NO3 -, Cl-, F-, Ca2+,Mg2+ andNa+) in precipitation, throughfall and stemflow indicatedthe common sources of these ions such as coal combustion,automobile emission and fertilizers application. Compared toprecipitation, there was an increased ion concentration inthroughfall or in stemflow. Changes of ion concentrations werein Quercus liatungensis Koiz. and Pinus tabulaefornisCarr. throughfall (or stemflow) because of different crown andbark qualities of tree species.  相似文献   

9.
Summary A Pakistani soil (Hafizabad silt loam) was incubated at 30°C with varying levels of 15N-labelled ammonium sulphate and glucose (C/N ratio of 30 at each addition rate) in order to generate different insitu levels of 15N-labelled microbial biomass. At a stage when all of the applied 15N was in organic forms, as biomass and products, the soil samples were analysed for biomass N by the chloroform (CHCl3) fumigation-extraction method, which involves exposure of the soil to CHCl3 vapour for 24 h followed by extraction with 500 mM K2SO4. A correction is made for inorganic and organic N in 500 mM K2SO4 extracts of the unfumigated soil. Results obtained using this approach were compared with the amounts of immobilized 15N extracted by 500 mM K2SO4 containing different amounts of CHCl3. The extraction time varied from 0.5 to 4 h.The amount of N extracted ranged from 27 to 270 g g–1, the minimum occurring at the lowest (67 g g–1) and the maximum at the highest (333 g g–1) N-addition rate. Extractability of biomass 15N ranged from 25% at the lowest N-addition rate to 65%a for the highest rate and increased consistently with an increase in the amount of 15N and glucose added. The amounts of both soil N and immobilized 15N extracted with 500 mM K2SO4 containing CHCl3 increased with an increase in extraction time and in concentration of CHCl3. The chloroform fumigation-extraction method gives low estimates for biomass N because some of the organic N in K2SO4 extracts of unfumigated soil is derived from biomass.  相似文献   

10.
The degree to which floating aquatic plants concentrate Se in tissues was determined for four species grown in solutions containing various levels of Se. Results of this greenhouse study showed that all four plant species, Azolla caroliniana, Eichhornia crassipes, Salvinia rotundi folia, and Lemna minor absorbed Se quickly upon exposure to Se in water as concentrated as 2.5 g Se mL–1, and attained maximum tissue concentrations within 1 to 2 weeks. Azolla absorbed Se to the highest tissue concentration (about 1000 g Se g–1 dry matter) from the 2.5 g Se mL–1 solution, followed by Salvinia (700 g Se g–1), Lemna (500 g Se g–1),and Eichhornia (300 g Se g–1). Plant growth appeared unaffected by solution Se concentrations lower than about 1.25 g mL–1. These results indicate potential for rapid Se movement from water into aquatic food chains, and for use of aquatic plants for Se removal in wastewater treatment systems.  相似文献   

11.
Growth rate change in earthworms is considered to be a suitable endpoint when determining sublethal effects. In this study we evaluated growth and maturation in the vermicomposting earthworm speciesEudrilus eugeniae as marker of sublethal toxicity of copper and zinc. We also compared routes of uptake. Apart from exposing worms experimentally for 73 days to contaminated food, a series of contact filter paper tests was also performed to determine LD50 for copper and zinc. Both copper and zinc at sublethal concentrations affected growth and maturation in worms exposed to contaminated food. These worms had a copper content of 34.5 g g–1 after 73 days and a zinc content of 184.9 g g–1, showing a differential uptake. Copper was more toxic than zinc. Also in the contact test worms did take up more zinc than copper and the LD50 (48 h) for copper was 0.011 mg cm–2 and for zinc 0.066 mg cm–2, which translated to body burdens of 6 g g–1 for copper and 131 g g–1 for zinc. Indications were that a regulatory mechanism existed for both metals. Both metals were taken up through the body wall at a relatively fast rate. This study indicated that the skin was the major route of metal uptake. This study also showed a poor relation between the two types of tests for purposes of evaluating lethality of zinc and copper.  相似文献   

12.
Summary The direct contribution made by soil arthropods to nutrient dynamics was investigated in pine forests that differed in soil nutrient status. Nutrient concentrations (K+, Ca2+, Mg2+, PO 4 3– , N, C) in the most abundant species and groups of arthropods in two Pinus nigra forests were compared, and distinct differences were found among taxonomic groups. In the rank order: collembolans, oribatides, isopods, diplopods, Ca2+ and Mg2+ concentrations increased, while N and C concentrations decreased. The nutrient concentrations in individuals of the same species but originating from the different forests were similar, except for the isopod Philoscia muscorum. The total and available nutrient concentrations in food and faeces of the collembolan Tomocerus minor and the isopod Philoscia muscorum were compared. The isopod faeces contained relatively less K+ and Mg2+, and more Ca2+, PO 4 3– , and greater N availability, compared with the food material. The collembolan faeces showed a higher availability of all nutrients measured. The N species appeared to be changed by collembolans; their faeces contained high NO 3 concentrations, while their food contained relatively high concentrations of NH 4 + . These findings were examined in relation to their significance for ecosystem functioning. It was concluded that about 12% of the total K+, PO 4 3– , N and 2% of the Ca2+ in the organic layer was found in the mesofauna. It was calculated that faeces production by the collembolans resulted in a 2.4 times higher NO 3 availability in the forest floor.  相似文献   

13.
Field studies using open-top chambers were conducted at USDA-BARC involving the growth of soybeans ('89 & '90), wheat ('91 & '92), and corn ('91), under increased concentrations of atmospheric CO2 and O3. Treatment responses were compared in all cases to plants grown in charcoal-filtered (CF) air (seasonal 7-h mean = 25±3 n mol O3 mol–1) having 350 or 500 mol CO2 mol–1. Elevated seasonal O3 levels for the soybean, wheat, and corn studies averaged 72.2±4, 62.7±2, and 70.2 n mol O3 mol–1, respectively. Results presented were obtained for plants grown in silt loam soil under well-watered conditions. Grain yield increases in response to elevated CO2 in the absence of O3 stress averaged 9.0, 12.0, and 1.0% for soybean, wheat, and corn; respectively. Reductions in grain yields in response to the elevated O3 treatments at 350 mol CO, mol–1 averaged 20.0, 29.0 and 13.0% for soybean, wheat, and corn, respectively. Reductions in grain yields in response to elevated O3 at 500 mol CO2 mol–1 averaged 20.0, 8.0, and 7.0% for soybean, wheat, and corn, respectively. Dry biomass and harvest index in wheat were significantly reduced by O3 stress at 350 mol mol 1 CO2 but not at 500 u mol mol–1 CO2. Seed weight 1000–1 for scybeans and wheat was significantly increased by CO2 enrichment and decreased by O3 stress. Seed weight 1000–1 in corn was increased by O3 stress suggesting that O3 affected pollination resulting in fewer kernels per ear.Scientific Article No. A7784, Contribution No. 9105, Maryland Agric. Exp. Sta., Univ. of MD, College Park, MD 20472  相似文献   

14.
High-elevation red spruce-Fraser fir forests in the Southern Appalachian mountains: 1) receive among the highest rates of atmospheric deposition measured in North America, 2) contain old-growth forests, 3) have shown declines in forest health, 4) have sustained high insect-caused fir mortality, and 5) contain poorly buffered soils and stream systems. High rates of nitrogen and sulphur deposition (1900 and 2200 Eq·ha–1·yr–1, respectively) are dominated by dry and cloud deposition processes. Large leaching fluxes of nitrate-nitrogen (100–1400 Eq·ha–1·yr–1) occur within the soil profile. We have expanded the study to the watershed scale with monitoring of: precipitation, throughfall, stream hydrology, and stream chemistry. Two streamlets drain the 17.4 ha Noland Divide Watershed (1676–1920m) located in the Great Smoky Mountains National Park. A network of 50 20x20 m plots is being used to assess stand structure, biomass, and soil nutrient pools. Nitrate is the predominant anion in the streamlets (weighted concentrations: 47 and 54 eq·L–1 NO3 ; 31 and 43 eq·L–1 SO4 2–). Watershed nitrate export is extremely high (1000 Eq·ha–1 yr–1), facilitating significant base cation exports. Stream acid neutralizing capacity values are extremely low (–10 to 20 eq·L–1) and episodic acidifications (pH declines of a full unit in days or weeks time) occur. Annual streamwater sulfate export is on the order of 770 Eq·ha–1yr–1 or about one-third of total annual inputs, indicating there is net watershed sulfate retention. The system is highly nitrogen saturated (Stage 2, Stoddard, 1994) and this condition promotes both chronic and episodic stream acidification.  相似文献   

15.
This paper summarizes results from 8 years (1996–2003) of eddy covariance-based ecosystem CO2 exchange measurements at the Borden Forest Research Station (44°19′N, 79°56′W). The site represents a mid-latitude, 100-year-old, mixed deciduous and coniferous forest dominated by red maple, aspen and white pine. The years 1996 and 1997 were relatively cold, had a late spring and received below average photosynthetic photon flux density (PPFD). This contrasts with an early spring, warmer soil and air temperatures during 1998–1999, and with distinctly wet year of 2000 and dry years of 2001–2003. The combination of early spring, warmer air and soil temperature and relatively high level of PPFD was associated with higher net ecosystem productivity (NEP) that peaked during 1999. Photosynthetic capacity was reduced and NEP showed a mid-growing season depression during the dry years of 2001–2003. Annual average ecosystem respiration (R) determined from a light response model was 30% less than R derived from a logistic respiration equation, relating night time CO2 flux and soil temperature. However these independently determined R values were well correlated indicating that the site is unaffected by fetch and spatial heterogeneity problems. Based on the combined 8 years of growing season daytime data, an air temperature of 20–25 °C and a vapor pressure deficit (VPD) of 1.3 kPa were found to be the optimal conditions for CO2 uptake by the canopy. Over the 1996–2003 period, the forest sequestered carbon at an average rate of 140 ± 111 gC m−2 y−1. The corresponding gross ecosystem photosynthesis (GEP) and R over this period were 1116 ± 93 gC m−2 y−1 and 976 ± 68 gC m−2 y−1, respectively. The annual carbon sequestration ranged from 19 gC m−2 in 1996 to 281 gC m−2 in 1999. However, these estimates were sensitive to frictional velocity threshold () used for screening data associated with poor turbulent mixing at night. Increasing from 0.2 m s−1 (based on the inflection point in the nighttime CO2 flux vs. u* relationship) to 0.35 m s−1 (determined using a selection algorithm based on change-point detection) modified the 8-year mean NEP estimate from 140 ± 111 gC m−2 y−1 to 65 ± 120 gC m−2 y−1. Both approaches show that the Borden forest was a low to moderate sink of carbon over the 8-year period.  相似文献   

16.
Episodic acidification-the short-term loss of acid neutralizing capacity (ANC) in surface waters during periods associated with rainfall and snowmelt runoff-has been shown in previous field studies to be a ubiquitous process that can have long-term adverse effects on fish populations. A systematic field study of episodic acidification in five gaged Shenandoah National Park (SNP) streams was initiated in 1991, while a long-term study of changes in acid-base chemistry in four gaged SNP streams has been in operation since 1979. Statistical analysis of the long-term record of mean daily discharge and weekly streamwater chemical composition was performed to identify the dominant processes that control episodic acidification of SNP streams; an objective hydrological separation technique was used to determine whether each weekly sample was taken during antecedent baseflow or stormflow conditions. Using this technique, more than 100 stormflow/baseflow pairs were identified in the long-term (1980–1992) record for White Oak Run from which episodic chemical changes were estimated. Statistical analysis of the resultant data suggested that mean episodic depressions in ANC have increased by nearly a factor of two in White Oak Run since the first outbreak of forest defoliation by the gypsy moth caterpillar during the summer of 1990.  相似文献   

17.
Summary Oniscus asellus produced changes in the nutrients leached from Oie and Oa horizons of a hardwood forest soil. Soil with isopods lost more K+ (54%) from the Oie horizon and more Ca2+ (25%), Mg2+ (40%), and water-extractable S (23%) from the Oa horizon than soil without isopods. In contrast, soils with isopods lost less Ca2+ (39076) from the Oie horizon and less dissolved C-bonded S (33%) from the Oa horizon than soil without isopods. In addition, the Oia and Oa horizons exhibited different nutrient dynamics. When isopods were present, the Oa horizon leachates accumulated more Na+ K+, Ca2+, Mg2+, NO3 , water-soluble SO4 2–, and dissolved C-bonded S, and the Oie horizon retained more of these nutrients. The type of leaching solution also had a major effect on nutrients. Leaching with a simulated soil solution resulted in smaller nutrient losses for K+ and Mg2+ in both horizons and for Na+, Ca2+, and NO3 in the Oa horizon than leaching with distilled water.  相似文献   

18.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

19.
Short-term acidification of surface waters in the eastern United States accompanying rainfall and snowmelt events represents an important aspect of the regional acidification problem. The objectives of this field study were to (1) examine the changes in acid-base chemistry during stormflow conditions, (2) understand the hydrological flowpaths that control streamwater acid neutralizing capacity (ANC), and (3) evaluate the contribution of individual ions to the overall changes in streamwater ANC. Three forested mountain streams in Shenandoah National Park (Paine Run, Piney River, and Staunton River) were chosen based on their similar catchment size (11–13 km2) but different bedrock geology and baseflow ANC. Throughout the three-year study, samples were collected at eight-hour intervals (primarily to establish antecedent baseflow conditions), and at two-hour intervals during events until the flow receded. All samples were analyzed for pH, ANC, and all major cations and anions. During storm events, pH and ANC decreases were observed in all streams, with ANC becoming negative several times in Paine Run. Base cation concentrations typically increased in Paine Run and Staunton River, but usually decreased in Piney River. Sulfate and nitrate concentrations generally increased in all streams. Antecedent baseflow ANC was found to be the best predictor of the minimum ANC. The data from more than 40 episodes on these streams (initiated by 25 different storm events) are interpreted to evaluate the relative importance of natural and anthropogenic sources of acidity to these acid-sensitive natural waters.  相似文献   

20.
The Shenandoah National Park: Fish in Sensitive Habitats (SNP:FISH) project is a response to declining pH and acid neutralizing capacity in Shenandoah National Park (SNP) streams. SNP receives more atmospheric sulfate than any other USA national park, and pH had decreased to the point where early negative effects on fish were expected. SNP provides the opportunity to study the early stages of acidification effects on fish. Three different classes of geological formations yield streams with low-ANC (0 Eq/L), intermediate-ANC (60–100 Eq/L) or high-ANC (150–200 Eq/L) waters in SNP. This allows a comparison of responses across a water quality gradient in a small geographic area receiving similar deposition. Both chronic and episodic acidification occur in SNP streams. Biological effects are apparent in fish species richness, population density, condition factor, age, size, and bioassay survival. A primary project objective was to provide the necessary data for development and testing models for forecasting changes in fish communities resulting from changes in stream chemistry. Monitored variables include several which are predictive of acidification effects on SNP fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号