首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
苹果幼树生理指标对土壤水分调控的响应研究   总被引:1,自引:0,他引:1  
为研究苹果幼树的适宜生长条件,以山西果树研究所的基砧为八角海棠、中间砧为SH6的5 a生晋富1号为试材,滴灌处理共设置4个土壤水分下限:80%θc(W1)、70%θc(W2)、60%θc(W3)、50%θc(W4),对照处理(CK,地面灌溉)灌水下限为60%θc(θc为田间持水率),各处理灌水上限均为田间持水量.通过分...  相似文献   

2.
玉米光合指标与土壤水分的关系研究   总被引:1,自引:0,他引:1  
在防雨棚内膜下滴灌条件下,通过小区试验研究玉米拔节期和抽雄期光合指标(蒸腾速率、光合速率、气孔导度)与土壤水分的关系。结果表明,在玉米拔节期,当土壤水分达到田间持水率的70%时,玉米光合强度最强;光合指标与土壤水分的典型相关系数为0.919,其相关性极显著(P0.01),在光合要素中,蒸腾速率的权重最大。在玉米抽雄期,当土壤水分达到田间持水率的85%时,玉米光合强度最强;且各光合指标均高于拔节期,此时其典型相关系数为0.742,相关性极显著,在光合要素中,则变为光合速率的权重最大,成为主要被影响因素。结合各时期产量,可以确定玉米在拔节期和抽雄期的最适宜土壤含水率分别为田间持水率的70%和田间持水率的85%。  相似文献   

3.
冬小麦节水灌溉的适宜土壤水分上,下限指标研究   总被引:7,自引:1,他引:7  
利用田间试验结果研究了冬小麦拔节~灌浆期间叶片光合速率、蒸腾达率、气孔阻力与土壤水分变化之间的关系,并从叶片水平探讨提高光合水分利用效率指导大田灌溉的适宜上壤水分上、下限指标。结果表明,冬小麦叶片光合速率的高值区域所对应的土壤水分为18%~19.2%(相当于田间持水率的75%~80%);当土壤水分超过19.2%时,光合速率开始缓慢降低,而蒸腾速率则仍在增加,导致光合水分利用效率急剧降低。据此可将冬小麦节水灌溉的适宜土壤水分上限指标定为田间持水率的80%。冬小麦叶片的气孔阻力对土壤水分的变动有一阈值反应,当土壤水分不低于14%(相当于田间持水率的58.3%)时,土壤水分对气孔阻力的影响几乎等效,同时不会对叶片光合作用引起破坏性影响,故可将此值定为冬小麦节水灌溉的适宜土壤水分下限指标。  相似文献   

4.
以温室春-夏季番茄为试验材料,采用小区试验方法,探讨了花果期和盛果期不同土壤水分条件下番茄叶片生理指标日变化特性、水分利用效率WUEL及生态因子间相关性。结果表明,番茄不同生育期生理指标日变化峰值时间不同;日均气孔导度、蒸腾速率随土壤水分的增加而变大,而日均光合速率最大值出现在70%土壤相对含水率的处理;两生育期蒸腾速率和光合速率受气孔调节的效应明显。在试验范围内,土壤水分越低,WUEL越高,番茄花果期WUEL较大。光合有效辐射是影响叶片光合速率重要生态因子。  相似文献   

5.
利用盆栽试验控制土壤含水率,基于叶绿素荧光、气体交换和响应曲线拟合相结合的方法解析番茄光合作用中CO2由大气传输至叶绿体羧化位点的系列阻力构成,揭示了土壤水分胁迫限制番茄光合速率的关键步骤及位点。结果表明:番茄光合速率(Pn)、最大羧化速率(Vc,max)、最大电子传递速率(Jmax)及初始羧化效率(CE)随土壤含水率变化呈“S”形变化曲线,初期缓慢增长,中期迅速增长,土壤水分充分时达到最大值并趋于稳定,可用logistic函数模拟。气孔和叶肉对CO2的传输导度及总传输导度随土壤含水率变化均呈明显的“S”形变化曲线,各支段CO2导度及总传输导度在土壤水分充分时趋于稳定并达到最大值;随着土壤水分胁迫的增大,各CO2传输导度逐渐降低并在重度土壤水分胁迫下达到最低值,可用logistic函数模拟。气孔导度与叶肉导度对光合速率限制的相对贡献率变化趋势相似,随着水分胁迫的加重,其贡献率逐渐增大,可以用指数函数模拟;羧化反应对光合速率限制的相对贡献率与气孔和叶肉导度相反,随着水分胁迫的增大,其贡献率逐渐减小,可以用对数函数模拟;在土壤水分充分时,羧化反应限速光合速率的相对贡献率最大,是限制光合速率的主导因子;在水分胁迫状况下,气孔限制和叶肉限制占主导地位,羧化反应的相对贡献率较低。气孔对CO2的传输导度与叶水势呈正相关,随叶水势的下降,气孔导度也呈线性下降趋势;叶肉导度与比叶重呈线性负相关关系,叶肉导度随比叶重的增大而线性减小,比叶重随土壤水分胁迫程度的加剧而逐渐增大。因此,水分胁迫状况下,气孔与叶肉对CO2的传输是水分胁迫限制光合速率的关键位点,气孔限速与保卫细胞水分失衡相关,而叶肉限速则由叶片厚度和组织疏松程度决定。  相似文献   

6.
不同土壤含水量条件棉花光合作用日变化特性研究   总被引:1,自引:0,他引:1  
姬亚琴  杨鹏年 《节水灌溉》2015,(2):21-23,30
采用CB-1102型光合仪对棉花在不同缺水情况下的光合日变化进行监测,通过试验数据分析得出以下结论:4种不同土壤含水率下的光合有效辐射受天空云层覆盖程度影响而与土壤含水率无关;净光合速率,蒸腾速率和气孔导度均会出现双峰值情况,并且其峰值因土壤含水率高而偏高;胞间CO2浓度呈左倾"V"状且与含水率有密切的关系。研究不同土壤含水情况下的棉花冠层叶片的光合日变化,可以提高田间水利用效率,达到高效节水的目的,对极度缺水的新疆南疆地区的棉花种植具有重要的指导意义。  相似文献   

7.
【目的】探究气候干旱和极端高温不利条件下田间小气候调节的作用。【方法】以新疆大田成龄灰枣树为试验试材,在开花坐果期进行微喷灌处理T1(2 mm/d)、T2(4 mm/d)、T3(6 mm/d)和对照CK(0 mm/d),研究枣树开花坐果期田间小气候调节对其光合特性、产量和品质的影响。【结果】枣树开花坐果期开展田间小气候调节,不仅对枣树的光合特性有显著影响,提高了枣树叶片叶绿素量、净光合速率Pn和气孔导度Gs,降低了胞间CO2摩尔分数Ci和蒸腾速率Tr。而且有利于提高红枣产量和品质。【结论】因此,微喷灌是应对气候干旱和极端高温的有效举措,可有效改善田间作物生长环境。  相似文献   

8.
在控温控湿条件下 ,盆栽试验测定 1年生沙棘苗木蒸腾耗水 ,研究结果为 :不同土壤水分处理 ,生长季节沙棘苗木蒸腾速率日变化一般为单峰曲线 ,峰值多出现在 12∶0 0~ 14∶0 0时 ;含水量处理Ⅰ、Ⅱ、Ⅲ和Ⅳ苗木蒸腾速率的均值分别为 4 0 2 4 2 1± 0 4 5 2 5 7、2 92 172± 0 30 6 18、2 790 4 9± 0 346 76和 2 9333±0 384 71mmolH2 O m 2 s 1。沙棘苗木蒸腾速率季节变化出现两次高峰 ,第一次多在 7月 ,而第二次则在 9~10月。生长季节沙棘苗木单株累计蒸散耗水量随季节呈线性增加 ,土壤水分处理Ⅰ、Ⅱ、Ⅲ和Ⅳ苗木累计蒸散耗水量分别为 173 114 4、14 1 5 0 86、12 0 732 8kg和 5 7 75 10 1kg ,水分利用率分别为 0 2 810 2 8、0 198182、0 19170 9g/kg和 0 2 730 77g/kg。生长季节苗木单株蒸散耗水量呈单峰曲线 ,其耗水高峰期多出现在 7~ 8月 ;蒸发耗水量 6月最高 ,之后随着生长进程而逐渐降低 ;蒸腾耗水量的季节变化也表现为单峰曲线 ;生长季不同月份 ,蒸散耗水量、蒸发耗水量和蒸腾耗水量皆随土壤含水量的降低而逐渐降低。  相似文献   

9.
水分是影响黄瓜生长发育的重要因子.以温室盆栽黄瓜为试验材料,研究了不同土壤含水量对温室黄瓜生长与光合特性的影响.结果表明:温室黄瓜在土壤含水量较高时,株高和产量增长较快,随着土壤含水量降低,叶片光合速率、蒸腾速率、气孔导度和叶水势均下降.考虑到温室内湿度大,当土壤含水量为21.36%(波动范围在±0.2%)时,效果最好,可以作为合理灌溉的依据.  相似文献   

10.
新疆棉花叶片光合与蒸腾特性对膜下滴灌的响应   总被引:1,自引:0,他引:1  
利用PTM-48光合作用测定仪研究了新疆棉花不同生长期叶片光合、蒸腾特性及其对膜下滴灌的响应机理。结果表明,膜下滴灌条件下不同生长期棉花叶片净光合速率日变化为单峰型曲线,峰值出现在12:00~16:00之间,生长期间没有出现光合午休现象;而蒸腾速率并非单峰曲线,有波动变化;苗期、蕾期叶片净光合速率及蒸腾速率大于其它生育时期;随着棉花的生长发育,光饱和点和光补偿点均呈先升后降的变化趋势,开花期光饱和点及光补偿点最高;表观量子效率基本呈下降趋势,但在铃期较开花期出现小幅增加;叶片水分利用效率日变化呈现多样化,早晚各出现一个峰值;日平均水分利用效率呈先升后降趋势,蕾期日平均水分利用效率最高;暗呼吸速率在开花期最高,吐絮期最低。  相似文献   

11.
小麦节水高产的土壤水分调控标准研究   总被引:1,自引:0,他引:1  
简明阐述了小麦节水高产的土壤水分调控理论依据,系统研究了影响土壤水分调控标准的主要因素的相互作用与特点,总结提出了调控标准与范围以及农水措施相结合的栽培技术,小麦的水分利用效率达到1.61kg/m3,对指导当前节水农业实践具有现实意义  相似文献   

12.
为了确定农田土壤水流运动状况,根据据冬小麦生长期内的日降雨量、暗管出流量、水面蒸发量等资料,在土壤水分平衡的基础上,利用经验公式求解土壤棵间蒸发量和植物蒸腾量,再运用SWMS-2D模型对计算结果进行模拟和验证。模拟结果显示,暗管出流量和地下水位的计算值与实测值在总体上比较吻合。  相似文献   

13.
不同秸秆覆盖量对冬小麦生理及土壤温、湿状况的影响   总被引:13,自引:2,他引:13  
在干旱条件下,采用小区试验,研究了农田不同秸秆覆盖量对冬小麦土壤含水率、土壤温度的影响,比较了冬小麦生理及产量状况。试验设4个处理,秸秆覆盖量分别为0(CK)、0.3(F0.3)、0.6(F0.6)和0.9(F0.9)kg/m2。试验结果表明:在小麦全生育期内秸秆覆盖可有效地保持土壤水分;在小麦返青后F0.6保持了较高的土壤温度,有利于小麦的拔节;实际产量F0.6最高,单方水产量以F0.6最高,F0.9次之,认为在此试验条件下适宜的秸秆覆盖量为0.6 kg/m2。  相似文献   

14.
为研究滴灌条件下冬小麦抽穗期水分对旗叶叶片相关生理状况的影响,以新冬22号和新冬43号小麦品种为供试材料,采用单因素随机区组实验设计,进行大田实验,分别设置225mm(W1)、375mm(W2)、525mm(W3)、675mm(W4)和825mm(W5)5个灌水处理,在灌水前后监测土壤水势的变化,同时测定冬小麦旗叶中的叶绿素、丙二醛、可溶性糖、脯氨酸等生理指标以及计算各生理指标在不同灌量下的补偿系数。试验结果表明:相同灌量条件下,土壤水势的恢复能力表现为0~20cm土层最好,20~40cm次之,40~60cm最弱。不同灌量条件下,超过W3灌量的处理均能恢复的较好,而低于W3灌量的W1、W2处理则表现出水分的过度消耗;不同的生理指标对水分的敏感度不同,各指标表现为丙二醛>可溶性糖>脯氨酸>叶绿素;不同土壤水分条件下,可溶性糖、脯氨酸等生理指标均在W3处理下产生的补偿效应最大,其中脯氨酸会有一定的滞后性。因此建议在冬小麦抽穗期,20~60cm土层距离滴灌带15cm处的土壤水势灌前应维持在-85.5^-68.0kPa。  相似文献   

15.
冬小麦不同深度灌水条件下土壤水分运动数值模拟   总被引:2,自引:0,他引:2  
冬小麦深度灌水可以促进根系深扎,提高水分利用率。为了定量计算深度灌水条件下土壤水分动态,根据冬小麦不同深度灌水试验,用土壤水分运动方程的源项模拟不同深度灌水,建立了冬小麦不同深度灌水条件下土壤水分运动模型,采用有限差分法求解。利用不同深度灌水冬小麦试验数据对模型进行验证,结果表明模型计算的土壤含水率与实测土壤含水率的动态变化趋势一致,二者显著相关,相关系数在0.90以上,模型平均绝对误差最大值为0.023 cm3/cm3,平均相对误差最大值为8.22%,均方根误差最大值为0.03 cm3/cm3。所建模型具有较高的模拟精度,可用于模拟不同深度灌水条件下冬小麦土壤水分分布与动态变化。  相似文献   

16.
通过2个生长季的田间试验,研究了黄淮海平原播前土壤水分对冬小麦生长发育、籽粒产量及水分利用的影响。结果表明,在播前不灌水条件下,越冬期或返青期灌水都可以获得较高的籽粒产量和水分利用效率,表明播前土壤贮存的水分可以满足冬小麦返青以前对水分的需求。在播前储水灌溉条件下,越冬期不需要灌溉,返青期是适宜的灌水时间;在拔节期或灌浆期灌水都会降低冬小麦的产量和水分利用效率。  相似文献   

17.
不同土壤水分条件下冬小麦根系分   总被引:15,自引:1,他引:15  
利用2004~2005年冬小麦测坑试验资料,研究了不同土壤水分条件对冬小麦根系分布及其耗水特性的影响,并在此分析基础上,探讨了冬小麦适宜供水方案和土壤水分剖面最佳消耗形式,这对提高农田土壤水分有效利用率具有重要的意义。  相似文献   

18.
基于IBAS-BP算法的冬小麦根系土壤含水率预测模型   总被引:1,自引:0,他引:1  
为在节水灌溉系统中精确测量和预测根系土壤含水率,将传统天牛须算法每次迭代过程中的一只天牛改进为一个天牛种群,建立了基于改进天牛须搜索算法优化的IBAS-BP预测模型,并利用实测浅层土壤含水率数据,对深度50 cm冬小麦根系土壤含水率进行预测.结果 表明,与PSO-BP预测模型、GA-BP预测模型以及原始BAS-BP模型...  相似文献   

19.
北部生态系统生产力模拟(BEPS,Boreal Ecosystem Productivity Simulator)模型能够模拟不同生态系统碳水循环过程,并通过气孔导度将二者有机地结合,在土壤水分模拟上具有更大的优势。为了使BEPS模型适用于较小空间尺度的雨养冬小麦农田生态系统的土壤水分模拟,根据冬小麦的降水截留过程、冠层的辐射传输过程、根系分布规律和区域土壤水文参数的获取方法对BEPS模型的水平衡模块进行参数方案调整。在此基础上,基于实现BEPS模型与遥感反演的农田土壤水分数据同化的目的,利用经上述调整方案后的BEPS模型,对郑州农业气象试验站2011—2015年冬小麦生长季的农田土壤水分进行动态模拟,并用观测数据进行验证。结果表明,调整后的BEPS模型能够较好地模拟雨养冬小麦农田土壤水分及动态变化,决定系数R2可达0.70以上,平均相对误差MRE总体低于25.0%,但对底层模拟能力较差;在以旬为步长条件下,拔节前模拟效果优于拔节后;土壤水文参数是影响模型模拟土壤水分垂直交换和分布的主要因素,可通过优化进一步提高土壤水分模拟能力。  相似文献   

20.
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号